首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Neoglycolipid technology is eminently adaptable for microarray design for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Dermatan sulfate (DS) is known to play an important role because of its ability to bind growth factors as well as chemokines and to modulate their biological activities during inflammation and response to injury. We prepared various iduronic acid-rich fragments from DS by complete digestion with chondroitinase ACI, and investigated whether the DS-binding proteins, such as HGF/SF, RANTES, KGF/FGF-7 and HCII, can detect their oligosaccharide ligands in a neoglycolipid microarray. First, a comparison of the intensity of binding signals obtained from chondroitin oligosaccharides with those of heparin oligosaccharides showed that our microarray system is feasible not only to single-out the oligosaccharide ligands, but also to detect the difference between an intrinsic interaction unrelated only to electrostatic interaction and non-specific electrostatic interaction. Second, HGF/SF, KGF/FGF-7 and HCII showed preferential binding to iduronic acid-rich fragments of DS oligosaccharides that are greater than 8-mers in lengths. In contrast, RANTES binding seemed to depend only on the negative charges; their binding intensity towards the DS oligosaccharides was somewhat stronger than the binding of HGF/SF, KGF/FGF-7 and HCII. Third, the use of polyvinylpyrrolidone-40 (PVP-40), ovalbumin (OV) and Tween 20 in place of BSA as a blotting agent was useful in these glycosaminoglycan dependent reactions to minimize background due to non-specific interactions.  相似文献   

2.
It has been proposed that oligosaccharides corresponding to the so-called regular region of heparin/heparan sulfate (HS) bind to fibroblast growth factor-2 (FGF-2). In order to explore the molecular basis of FGF/HS interaction, we describe here the chemical synthesis of a tetra and a hexasaccharide, prepared as methyl glycosides, corresponding to the regular sequence of heparin. The strategy relies on the efficient preparation of three building blocks: a seeding block, an elongating block and a capping block. The hexasaccharide inhibited the binding of FGF-2 on its receptor on human aorta vascular smooth muscle cells with an IC50 value (16+/-1.2 microg/mL) close to that of standard heparin (14.8+/-0.5 microg/mL) whereas the tetrasaccharide was much less potent (IC50 = 127+/-10.5 microg/mL). The hexasaccharide and heparin, inhibited in a dose-dependent manner FGF-2 (30 nM) induced proliferation (IC50 = 23.7+/-1.6 and 30.1+/-1.3 microg/mL, respectively). Under the same experimental conditions, the tetrasaccharide only slightly inhibited the mitogenic effect of FGF-2 (IC50 > 100 microg/mL).  相似文献   

3.
4.
Hepatocyte growth factor/scatter factor (HGF/SF) is a heparan/dermatan sulfate-binding growth factor produced by stromal cells that acts as a paracrine effector on neighboring epithelia. HGF/SF stimulated DNA synthesis in human mammary (Huma) 109 myoepithelial-like cells grown on collagen I and fibronectin substrata but not when grown on plastic. Dual phosphorylation of mitogen-activated protein kinases (p42/44(MAPK)) was required for this stimulation of DNA synthesis. In Huma 109 cells cultured on plastic, HGF/SF stimulated a transient phosphorylation of p42/44(MAPK), which reached a maximum at 10 min after addition of the growth factor and returned to near basal levels after 20 min. In contrast, the phosphorylation of p42/44(MAPK) stimulated by HGF/SF in cells cultured on collagen I or fibronectin was sustained over 45 min. In Huma 109 cells deficient in sulfated glycosaminoglycans, HGF/SF failed to stimulate p42/44(MAPK) phosphorylation or DNA synthesis on any substratum, even when soluble heparan sulfate proteoglycans purified from the cells or from the culture medium were added. However, HGF/SF stimulated DNA synthesis and a sustained phosphorylation of p42/44(MAPK) in sulfated glycosaminoglycan-deficient Huma 109 cells plated on a substratum of medium HSPGs but not cell HSPGs. The HGF/SF-induced proliferation is thus highly dependent on heparan sulfate proteoglycans in myoepithelial-like cells.  相似文献   

5.
《The Journal of cell biology》1995,129(5):1411-1419
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.  相似文献   

6.
The effect of hepatocyte growth factor/scatter factor (HGF/SF) on the proliferation of human skin fibroblasts was examined. At concentrations above 1.0 ng/ml, both native and recombinant human HGF/SF stimulated the DNA synthesis determined by [3H]thymidine incorporation, which was completely inhibited by an anti-human HGF/SF monoclonal antibody. The maximal DNA synthesis in the treated cells was nearly twice that in untreated cells. HGF/SF also caused an increase in the labelling index, DNA content and cell number. The effect of HGF/SF was more than additive to the maximal effect of insulin and epidermal growth factor, other mitogens for the fibroblasts. These results indicate that human skin fibroblasts are sensitive to the mitogenic action of HGF/SF.  相似文献   

7.
Hepatocyte growth factor/scatter factor (HGF/SF), the ligand for the receptor tyrosine kinase encoded by the c-Met proto-oncogene, is a multidomain protein structurally related to the pro-enzyme plasminogen and with major roles in development, tissue regeneration and cancer. We have expressed the N-terminal (N) domain, the four kringle domains (K1 to K4) and the serine proteinase homology domain (SP) of HGF/SF individually in yeast or mammalian cells and studied their ability to: (i) bind the Met receptor as well as heparan sulphate and dermatan sulphate co-receptors, (ii) activate Met in target cells and, (iii) map their binding sites onto the beta-propeller domain of Met. The N, K1 and SP domains bound Met directly with comparable affinities (K(d)=2.4, 3.3 and 1.4 microM). The same domains also bound heparin with decreasing affinities (N>K1>SP) but only the N domain bound dermatan sulphate. Three kringle domains (K1, K2 and K4) displayed agonistic activity on target cells. In contrast, the N and SP domains, although capable of Met binding, displayed no or little activity. Further, cross-linking experiments demonstrated that both the N domain and kringles 1-2 bind the beta-chain moiety (amino acid residues 308-514) of the Met beta-propeller. In summary, the K1, K2 and K4 domains of HGF/SF are sufficient for Met activation, whereas the N and SP domains are not, although the latter domains contribute additional binding sites necessary for receptor activation by full length HGF/SF. The results provide new insights into the structure/function of HGF/SF and a basis for engineering the N and K1 domains as receptor antagonists for cancer therapy.  相似文献   

8.
Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin.  相似文献   

9.
Induction of hepatocyte growth factor/scatter factor (HGF/SF) may be one of the critical steps in organ regeneration, wound healing, and embryogenesis. We previously reported the production of HGF/SF from various human leukemia cell lines and a high level of the growth factor in blood and bone marrow plasma from patients with various types of leukemia. We determined here the effects of hematopoietic cytokines on HGF/SF production in human leukemia cell lines, KG-1, a myeloid cell line, and RPMI-8226, a B cell line. Interferon (IFN)-γ remarkably stimulated HGF/SF production in both cell lines at concentrations of more than 0.1 or 1 IU/ml. IFN-α and IFN-β were as effective as IFN-γ in RPMI-8226 cells, but less than IFN-γ in KG-1 cells. HGF/SF gene expression in KG-1 cells was also up-regulated by IFN-γ. Granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-5 and IL-6 had no effect on HGF/SF production in the 2 leukemia cell lines. We also determined the effects of HGF/SF inducers known for human fibroblasts on the growth factor production in leukemia cells. Out of phorbol 12-myristate 13-acetate (PMA), cholera toxin, IL-1β, and tumor necrosis factor (TNF)-α, the former three were as effective as IFN-γ in KG-1 cells, but only TNF-α stimulated HGF/SF production in RPMI-8226 cells, whose effect was less than those of IFN-α, IFN-β, and IFN-γ. The effect of IFN-γ in KG-1 cells was synergistic with that of PMA. In contrast with the effect in leukemia cells, HGF/SF induction by IFN-γ in human skin fibroblasts was much less than that by PMA or cholera toxin. These results indicated that IFN-γ is a potent inducer of HGF/SF in human leukemia cells. This finding suggests the presence of a homeostatic control mechanism in liver regeneration and repair: hepatic injury, DNA synthesis inhibition, or apoptosis caused by IFN-γ is subsequently overcome by cytokine-induced HGF/SF, a potent promoter of liver DNA synthesis. J. Cell. Physiol. 174:107–114, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
p53 transactivates the expression of a variety of genes by binding to specific DNA sequences within the promoter. We have investigated the ability of wild-type p53 and a non-DNA binding p53 mutant to activate the hepatocyte growth factor/scatter factor (HGF/SF) promoter using chloramphenicol acetyltransferase reporter constructs. We also used deletion sequences of the HGF/SF promoter to identify which regions, if any, were responsible for p53 binding. Our results show that wild-type but not mutant p53 activates the HGF/SF promoter when using -3000 and -755 bp upstream of the HGF/SF gene. This activation is lost when promoter sequences covering -365 and -239 bp are used. Analysis of the DNA sequence between -365 and -755 bp shows one putative p53 half-site with 80% homology to the consensus sequence and another half-site 3 bases downstream of this with 100% homology to the consensus sequence. In contrast to previously identified p53 binding DNA sequences, the downstream half-site is inverted. We propose that the HGF/SF promoter can be activated by wild-type p53 in vivo and that this could be as a result of a novel form of sequence-specific DNA binding.  相似文献   

11.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector inducing invasion and metastasis of tumor cells that express the Met tyrosine kinase receptor. One of the effectors of HGF/SF is the urokinase-type plasminogen activator, a serine protease that facilitates tumor progression and metastasis by controlling the synthesis of the extracellular matrix degrading plasmin. Stimulation of NIH 3T3 cells that were stably transfected with the human Met receptor (NIH 3T3-Methum) with HGF/SF induced a trans-activation of the urokinase promoter and urokinase secretion. Induction of the urokinase promoter by HGF/SF via the Met receptor was blocked by co-expression of a dominant-negative Grb2 and Sos1 expression construct. Further, the expression of the catalytically inactive mutants of Ha-Ras, RhoA, c-Raf, and Erk2 or addition of the Mek1-specific inhibitor PD 098059 abrogated the stimulation of the urokinase promoter by HGF/SF. A sequence residing between -2109 and -1870 base pairs (bp) was critical for stimulation of the urokinase gene by HGF/SF. Mobility shift assays with oligonucleotides spanning an AP-1 site at -1880 bp or a combined PEA3/AP-1 site at -1967 bp showed binding of nuclear factors from NIH 3T3-Methum cells. Expression of an expression plasmid that inhibits DNA binding of AP-1 proteins (A-Fos) abrogated inducible and basal activation of the urokinase promoter. Nuclear extract from unstimulated NIH 3T3-Methum cells contained more JunD and showed a stronger JunD supershift with the AP-1 oligonucleotides, compared with HGF/SF-stimulated cells. Consistent with the levels of JunD expression being functionally important for basal expression of the urokinase promoter, we found that overexpression of wild type JunD inhibited the induction of the urokinase promoter by HGF/SF. These data suggest that the induction of urokinase by HGF/SF is regulated by a Grb2/Sos1/Ha-Ras/c-Raf/RhoA/Mek1/Erk2/c-++ +Jun-dependent mitogen-activated protein kinase pathway.  相似文献   

12.
Hepatocyte growth factor/scatter factor (HGF/SF) has a cofactor requirement for heparan sulfate (HS) and dermatan sulfate (DS) in the optimal activation of its signaling receptor MET. However, these two glycosaminoglycans (GAGs) have different sugar backbones and sulfation patterns, with only the presence of iduronate in common. The structural basis for GAG recognition and activation is thus very unclear. We have clarified this by testing a wide array of natural and modified GAGs for both protein binding and activation. Comparisons between Ascidia nigra (2,6-O-sulfated) and mammalian (mainly 4-O-sulfated) DS species, as well as between a panel of specifically desulfated heparins, revealed that no specific sulfate isomer, in either GAG, is vital for interaction and activity. Moreover, different GAGs of similar sulfate density had comparable properties, although affinity and potency notably increase with increasing sulfate density. The weaker interaction with CS-E, compared with DS, shows that GlcA-containing polymers can bind, if highly sulfated, but emphasizes the importance of the flexible IdoA ring. Our data indicate that the preferred binding sites in DS in vivo will be comprised of disulfated, IdoA(2S)-containing motifs. In HS, clustering of N-/2-O-/6-O-sulfation in S-domains will lead to strong reactivity, although binding can also be mediated by the transition zones where sulfates are mainly at the N- and 6-O- positions. GAG recognition of HGF/SF thus appears to be primarily driven by electrostatic interactions and exhibits an interesting interplay between requirements for iduronate and sulfate density that may reflect in part a preference for particular sugar chain conformations.  相似文献   

13.
CD44 has been implicated in tumor progression and metastasis, but the mechanism(s) involved is as yet poorly understood. Recent studies have shown that CD44 isoforms containing the alternatively spliced exon v3 carry heparan sulfate side chains and are able to bind heparin-binding growth factors. In the present study, we have explored the possibility of a physical and functional interaction between CD44 and hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the receptor tyrosine kinase c-Met. The HGF/SF-c-Met pathway mediates cell growth and motility and has been implicated in tumor invasion and metastasis. We demonstrate that a CD44v3 splice variant efficiently binds HGF/SF via its heparan sulfate side chain. To address the functional relevance of this interaction, Namalwa Burkitt's lymphoma cells were stably co-transfected with c-Met and either CD44v3 or the isoform CD44s, which lacks heparan sulfate. We show that, as compared with CD44s, CD44v3 promotes: (i) HGF/SF-induced phosphorylation of c-Met, (ii) phosphorylation of several downstream proteins, and (iii) activation of the MAP kinases ERK1 and -2. By heparitinase treatment and the use of a mutant HGF/SF with greatly decreased affinity for heparan sulfate, we show that the enhancement of c-Met signal transduction induced by CD44v3 was critically dependent on heparan sulfate moieties. Our results identify heparan sulfate-modified CD44 (CD44-HS) as a functional co-receptor for HGF/SF which promotes signaling through the receptor tyrosine kinase c-Met, presumably by concentrating and presenting HGF/SF. As both CD44-HS and c-Met are overexpressed on several types of tumors, we propose that the observed functional collaboration might be instrumental in promoting tumor growth and metastasis.  相似文献   

14.
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes.  相似文献   

16.
The growth of the malignant human mammary MDA-MB-231 cells is stimulated by fibroblast growth factor-1 (FGF-1) but not by FGF-2. When these cells are cultured in the presence of chlorate, an inhibitor of heparan sulfate (HS) sulfation, their proliferation is stimulated by both FGF-1 and FGF-2. We analyzed the interactions of FGF-1 and FGF-2 with HS purified from the cell layer and the culture medium of control and chlorate-treated MDA-MB-231 cells. The HS from the cell layer bound FGF-1 with faster association kinetics than the HS from the culture medium, and so had a higher affinity for FGF-1. Chlorate treatment had no significant effect on the FGF-1 binding kinetics of the HS. In contrast to FGF-1, chlorate treatment of the cells significantly altered the FGF-2 binding kinetics. The HS from untreated cells possessed two binding sites for FGF-2, one with fast association kinetics (k(ass) 470,000 to 610,000 M(-1) s(-1)) and a high affinity (K(d) 46 to 70 nM) and one with slower association kinetics (k(ass) 74,000 to 100,000 M(-1) s(-1)) and a lower affinity (K(d) 290 to 400 nM). HS from chlorate-treated cells possessed just a single binding site for FGF-2 with fast association kinetics (k(ass) 270,000 to 290,000 M(-1) s(-1)) and a high affinity (K(d) 41 to 57 nM). These results show that there is a relationship between the binding kinetics of FGFs and their ability to stimulate cell growth.  相似文献   

17.
18.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

19.
Inappropriate expression of the c-met-protooncogene product (Met) and/or of its ligand, hepatocyte growth factor/scatter factor (HGF/SF), has been correlated with poor prognosis in a variety of human solid tumors. We are developing animal models for nuclear imaging of Met and HGF/SF expression in tumors in vivo. We radioiodinated a mixture of monoclonal antibodies (MAbs) that bind to human HGF/SF and to the external ligand-binding domain of human Met, and then injected the I-125-MAb mixture intravenously into mice bearing tumors either autocrine for human HGF/SF and human Met or autocrine-paracrine for murine HGF/SF and murine Met. Serial total body gamma camera images were obtained, and regional activity was determined by quantitative region-of-interest (ROI) analysis. Tumors autocrine for human HGF/SF and Met demonstrated significantly more rapid uptake and more rapid clearance of the I-125-MAb mixture than tumors expressing one or both murine homologues, reaching a mean tumor to total body activity ratio of > 0.3 by 1 day postinjection. We conclude that radioimmunodetection of tumors autocrine for human HGF/SF and Met is feasible with an I-125-MAb mixture reactive against the ligand-receptor pair.  相似文献   

20.
The growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor MET, the tyrosine kinase encoded by the c-MET proto-oncogene, exert major roles in cancer invasion and metastasis and are key targets for therapy. NK1 is an alternative spliced variant of HGF/SF that consists of the N-terminal (N) and first kringle (K1) domains and has partial agonistic activity. NK1 crystallises as a head-to-tail dimer with an extensive inter-protomeric interface resulting from contacts between the two short interdomain linkers and reciprocal contacts between the N and K1 domains. Here we show that a subset of mutants at the NK1 dimer interface, such as the linker mutants Y124A or N127A or the kringle mutant V140A:I142A, bind the MET receptor with affinities comparable to wild-type NK1 but fail to assemble a dimeric, signalling competent NK1-MET complex. These NK1 variants have no detectable agonistic activity on, behave as bona fide receptor antagonists by blocking cell migration and DNA synthesis in target cells and have strong prospects as therapeutics for human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号