首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
In order to obtain new, cluster-forming antibiotic compounds, teicoplanin pseudoaglycone derivatives containing two lipophilic n-octyl chains have been synthesized. The compounds proved to be poor antibacterials, but, surprisingly, they exhibited potent anti-influenza virus activity against influenza A strains. This antiviral action was related to inhibition of the binding interaction between the virus and the host cell. Related analogs bearing methyl substituents in lieu of the octyl chains, displayed no anti-influenza virus activity. Hence, an interaction between the active, dually n-octylated compounds and the lipid bilayer of the host cell can be postulated, to explain the observed inhibition of influenza virus attachment.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Influenza virus A (IVA) infection is responsible for recent death worldwide. Hence, there is a need to develop therapeutic agents against the virus. We describe the prediction of short interfering RNA (siRNA) as potential therapeutic molecules for the HA (Haemagglutinin) and NA (Neuraminidase) genes. We screened 90,522 siRNA candidates for HA and 13,576 for NA and selected 1006 and 1307 candidates for HA and NA, respectively based on the proportion of viral sequences that are targeted by the corresponding siRNA, with complete matches. Further short listing to select siRNA with no off-target hits, fulfilling all the guidelines mentioned in approach, provided us 13 siRNAs for haemagglutinin and 13 siRNAs for neuraminidase. The approach of finding siRNA using multiple sequence alignments of amino acid sequences has led to the identification of five conserved amino acid sequences, three in hemagglutinin i.e. RGLFGAIAGFIE, YNAELLV and AIAGFIE and two in neuraminidase i.e. RTQSEC and EECSYP which on reveres translation provided siRNA sequences as potential therapeutic candidates. The approaches used during this study have enabled us to identify potentially therapeutic siRNAs against divergent IVA strains.  相似文献   

18.
19.
The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号