首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic proteins (BMPs) are well-established agents for inducing orthotopic and ectopic bone formation. However, their clinical usefulness as regenerative agents may be limited by a short in vivo half-life and low specific activity. BMP gene therapy is an alternative route for exploiting the bone-inductive activity of this class of molecules. To test the feasibility of this approach, we examined the osteogenic activity of AdCMV-BMP7, an adenovirus containing BMP7 cDNA under control of the CMV promoter that was constructed using Cre/lox recombination (Hardy et al. [1997] J. Virol. 71:1842-1849). Adenovirus vectors were shown to readily infect a wide variety of cell types in vitro including osteoblasts, fibroblasts, and myoblasts. COS7 cells transduced with AdCMV-BMP7 produced high levels of BMP-7 (approximately 0.5 microg/10(6) cells). Furthermore, transduction of C2C12 murine myoblast cells with AdCMVBMP-7 suppressed the muscle phenotype and induced in vitro osteoblast differentiation. To test its in vivo biological activity, AdCMV-BMP7 was mixed with a bovine bone-derived collagen carrier (10(8) plaque-forming units virus/site) and was implanted into mouse muscle and dermal pouches. In both cases, an ossicle containing cortical and trabecular bone and a clearly defined marrow cavity formed at the site of virus implantation within 4 weeks. These data demonstrate that AdCMV-BMP7 transduced cells produce biologically active BMP-7 both in vitro and in vivo and show that gene therapy by direct viral transduction using a virus/matrix implant may be a viable route for stimulating bone regeneration.  相似文献   

2.
The aim of this study was to examine the potential of immunoselected genetically modified human osteoprogenitors to form bone in vivo on porous PLA scaffolds. Human osteoprogenitors from bone marrow were selected using the antibody STRO-1 utilising a magnetically activated cell separation system. The STRO-1(+) fraction isolated 7% of nucleated marrow cells and increased fibroblastic colony formation by 300% and alkaline phosphatase activity by 190% over unselected marrow cell cultures. To engineer bone tissue, STRO-1(+) culture-expanded cells were transduced with AxCAOBMP-2, an adenovirus carrying the human BMP-2 gene, injected into diffusion chambers containing porous PLA scaffolds, and implanted in vivo. After 11 weeks the presence of bone mineral was observed by X-ray analysis and confirmed for mineral by von Kossa, as well as bone matrix composition by Sirius red staining, birefringence, and type I collagen immunohistochemistry. Bone formation in vivo indicates the potential of using immunoselected progenitor cells and ex vivo gene transfer with biodegradable scaffolds, for the development of protocols for the treatment of a wide variety of musculo-skeletal disorders.  相似文献   

3.
Calcitonin gene-related peptide (CGRP) promotes osteoblast recruitment and osteogenic activity. However, no evidence suggests that CGRP could affect the differentiation of stem cells toward osteoblasts. In this study, we genetically modified adipose-derived stem cells (ADSCs) by introducing the CGRP gene through adenoviral vector transduction and investigated on cellular proliferation and osteoblast differentiation in vitro and osteogenesis in vivo as well. For the in vitro analyses, rat ADSCs were transducted with adenoviral vectors containing the CGRP gene (Ad-CGRP) and were cultured in complete osteoblastic medium. The morphology, proliferative capacity, and formation of localized regions of mineralization in the cells were evaluated. The expression of alkaline phosphatase (ALP) and special markers of osteoblasts, such as Collagen I, Osteocalcin (BPG) and Osteopontin (OPN), were measured by cytochemistry, MMT, RT-PCR, and Western blot. For the in vivo analyses, the Ad-CGRP-ADSCs/Beta-tricalcium phosphate (β-TCP) constructs were implanted in rat radial bone defects for 12 weeks. Radiography and histomorphology evaluations were carried out on 4 weeks and 12 weeks. Our analyses indicated that heterogeneous spindle-shaped cells and localized regions of mineralization were formed in the CGRP-transduced ADSCs (the transduced group). A higher level of cellular proliferation, a high expression level of ALP on days 7 and 14 (p<0.05), and increased expression levels of Collagen I, BPG and OPN presented in transduced group (p<0.05). The efficiency of new bone formation was dramatically enhanced in vivo in Ad-CGRP-ADSCs/β-TCP group but not in β-TCP group and ADSCs/β-TCP group. Our results reveal that ADSCs transduced with an Ad-CGRP vector have stronger potential to differentiate into osteoblasts in vitro and are able to regenerate a promising new tissue engineering bone in vivo. Our findings suggest that CGRP-transduced ADSCs may serve as seed cells for bone tissue engineering and provide a potential way for treating bone defects.  相似文献   

4.
BMP-13 Emerges as a Potential Inhibitor of Bone Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Bone morphogenetic protein-13 (BMP-13) plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP) expression and activity, proteoglycan (PG) synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.  相似文献   

5.
6.
To examine the effectiveness of a gene transfer of bone morphogenetic protein (BMP)-2 into C2C12 myoblasts, we constructed a human BMP-2-expressing replication-deficient adenoviral vector, AxCAOBMP-2. C2C12 cells were infected in vitro with either this viral vector or an Escherichia coli LacZ gene-expressing control adenovirus vector. An efficient gene transfer to the C2C12 cells was confirmed with the LacZ gene-expressing vector by X-gal staining. Abundant BMP-2 expression in C2C12 cells infected with this viral vector was confirmed by immunofluorescence and Western blot analysis. C2C12 cells transferred with the BMP-2 gene by this vector produced alkaline phosphatase in the cells and also produced and secreted osteocalcin in the culture medium, demonstrating that a gene transfer of BMP-2 into C2C12 cells in vitro could convert these cells from myoblast to osteoblast lineage.  相似文献   

7.
《The Journal of cell biology》1994,127(6):1755-1766
The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.  相似文献   

8.
Wei Y  Hu Y  Lv R  Li D 《Cytotherapy》2006,8(6):570-579
BACKGROUND: Adipose tissue has been demonstrated to contain a population of progenitor cells that can differentiate into bone and cartilage. Studies have suggested that adipose-derived adult stem (ADAS) cells can be induced to differentiate into chondrocytes by transforming growth factor-beta (TGF-beta). In this study, we examined whether bone morphogenetic protein-2 (BMP-2), as a member of the TGF-beta superfamily, could regulate ADAS cells to differentiate into a chondrolineage. METHODS: ADAS cells were isolated and induced by rhBMP-2. These cells were cultured in pellets for 2 weeks, and the chondrogenic phenotype was observed in vitro and in vivo. ADAS cells cultured without BMP-2 were used as controls. RESULTS: After 2 weeks of culture, the differentiated ADAS cells reacted positively to Alcian blue and collagen II, and the content of collagen II protein was obviously up-regulated at day 14. Glycosaminoglycan (GAG) content gradually increased from day 2 to day 14 (P < 0.05). However, H&E staining and collagen II expression were weak, and there was a little collagen II protein and GAG detected in the control group. Additionally, the pellets of ADAS cells induced by rhBMP-2 were transplanted into BALB/C nude mice and formed cartilage lacuna at week 8 in vivo. DISCUSSION: These data demonstrate that rhBMP-2 induce ADAS cells to differentiate into chondrocytes in vitro and in vivo. This is useful for basic and clinical studies aimed at repairing cartilage damage. But in a control group, ADAS cells tended towards differentiation into chondrocytes, which was affected by ITS. We will be exploring the mechanism further.  相似文献   

9.
10.
In this study, heparin-conjugated poly(l-lactide-co-glycolide) (PLGA) nanospheres (HCPNs) suspended in fibrin gel (group 1) were developed for a long-term delivery of BMP-2, and then used to address the hypothesis that a long-term delivery of BMP-2 would enhance ectopic bone formation compared to a short-term delivery at an equivalent dose. Fibrin gel containing normal PLGA nanospheres (group 2) was used for short-term delivery of BMP-2. The in vitro release of BMP-2 from group 1 was sustained for 4 weeks with no initial burst release. In contrast, 83% of BMP-2 loaded in group 2 was released only for the first 3 days. BMP-2 released from group 1 stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 9 days in vitro. In contrast, BMP-2 released from group 2 induced a transient increase in ALP activity for the first 5 days and a decrease thereafter. Importantly, group 1 induced bone formation to a much greater extent than did group 2, with 2.0-fold greater bone formation area and 3.5-fold greater calcium content, upon implantation into rat hind limb muscle. These results show that long-term delivery of BMP-2 enhances in vivo osteogenic efficacy of the protein compared to short-term delivery at an equivalent dose.  相似文献   

11.
We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (p<0.05). The APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.  相似文献   

12.
The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.  相似文献   

13.
14.
Osteopontin (OPN) is a highly acidic secreted phosphoprotein that binds to cells via an RGD (arginine-glycine-aspartic acid) cell adhesion sequence that recognizes the alphaVbeta3 integrin. OPN may regulate the formation and remodeling of bone. To elucidate the function of OPN in bone tissue, we examined the overexpression of OPN in osteoblasts in vitro and in vivo using an adenoviral vector carrying an OPN cDNA (Adv-OPN). Rat bone marrow-derived osteoblasts infected with Adv-OPN were examined by Western blotting, immunofluorescence, nodule formation measurements, assay of alkaline phosphatase (ALP) activity, and Northern blotting. The results suggested that not only osteoblast differentiation markers such as osteocalcin and ALP, but nodule formation and ALP activity are markedly enhanced by OPN overexpression in the case of viral infection. On the contrary, when Adv-OPN and uninfected osteoblasts were implanted into subcutaneous sites with a porous ceramic scaffold, the ALP activity and calcium content of the OPN-infected composite were higher than in uninfected composites, however, the differences were smaller than expected from the in vitro experiments. We speculate that the difference in the result of in vitro and in vivo experiments originates from the inhibitory effect of secreted OPN on the crystal growth of apatite in vivo, which competes with the induced activity of osteoblasts.  相似文献   

15.
Bone morphogenetic proteins (BMPs) are a group of cytokines that are characterized by their ability to stimulate osteoblast differentiation and bone formation. However, the influence of BMPs on osteoblastic cells at different stages of differentiation is not known. Since bone matrix proteins are differentially regulated during bone formation we have studied the effects of recombinant human osteogenic protein-1 (rhOP-1; BMP-7) on the expression of these proteins by fetal rat calvarial cells (FRCCs) at discrete stages of osteoblast differentiation. Continuous administration of rhOP-1 to FRCCs, beginning at confluence (day 7), produced a dose-dependent increase in the number, size and mineralization of bone-like nodules formed in the presence of vitamin C and β-glycerophosphate. Within 9 h of administration, rhOP-1 stimulated a 3-fold increase in OPN mRNA which was reflected in a comparable increase in the low phosphorylated, 55 kDa form of osteopontin. In contrast, changes in type I collagen, alkaline phosphatase and bone sialoprotein mRNAs followed the differentiation of preosteoblastic cells, and were increased 2-, 4- and 5-fold, respectively, after 8 days (day 15). When administered at intermediate stages of osteoblast differentiation (days 12, 15 and 18) BSP remained refractory to rhOP-1 whereas the ALP was increased almost 2-fold, independent of the constitutive levels of mRNA expression. To determine the effects on osteoblasts, FRCCs were first grown to the bone nodule-forming stage (day 21) before rhOP-1 was administered. Only modest, transient increases in the expression of ALP and OPN mRNAs were evident whereas OC expression was increased more than 3-fold. In contrast, collagen type I and BSP mRNA levels were not changed significantly. These results suggest that rhOP-1 increases bone formation by promoting osteoblastic differentiation, as indicated by the increased number of bone forming colonies and by increasing the number of osteoblastic cells in the colonies, but not by increasing matrix production by individual osteoblasts. It is also evident that the regulation of bone matrix proteins by rhOP-1 is dependent upon the differentiated state of the cell. © 1996 Wiley-Liss, Inc.  相似文献   

16.
The effects of Osteogenic Protein-1 (OP-1, BMP-7) on the differentiation of the pluripotent mesenchymal cell line, C2C12, were examined. OP-1 at 50 ng/ml partially inhibited myotube formation in C2C12 cells, while OP-1 at 200 ng/ml completely inhibited myotube formation and induced the formation of cells displaying osteoblastic morphology. High concentrations of OP-1 elevated the alkaline phosphatase (AP) activity dramatically, both as a function of time and OP-1 concentration. Osteocalcin (OC) mRNA expression was detected as early as 8 days in OP-1-treated cultures and subsequently increased considerably. Expression of bone sialoprotein (BSP) mRNA was low in control cultures and stimulated by OP-1. Collagen type I mRNA expression was enhanced by OP-1 during the early days in culture, but gradually decreased thereafter. MyoD mRNA expression, high in control cultures, was suppressed by OP-1 in a dose- and time-dependent manner. OP-1 enhanced ActR-I mRNA expression and significantly elevated the mRNA expressions of BMP-1, BMP-4, BMP-5, GDF-6, and GDF-8. The present results indicate that OP-1 is a potent inducer of C2C12 differentiation into osteoblastic cells.  相似文献   

17.
Endothelin-1 (ET-1) is a vasoactive peptide that modulates bone metabolism via regulatory effects on osteoblasts, chondrocytes, and osteoclasts. While ET-1 may circulate in the blood stream, tissue-specific expression of this peptide is more physiologically relevant. In the present study we measured ET-1 synthesis in sections of fetal rat calvaria (FRC) and in cultured FRC osteoblasts. Regulation of ET-1 synthesis in FRC osteoblasts by bone morphogenetic protein-7 (BMP-7) and transforming growth factor-beta1 (TGF-beta1) also was examined. Immunohistochemical analysis revealed ET-1 staining in calvarial osteoblasts, endothelial cells, and osteocytes. ET-1 mRNA expression was detected in cultured FRC cells and ET-1 peptide was present in conditioned media. During long-term culture of FRC cells (26 days) ET-1 peptide production rose sharply and peaked during the time of cellular proliferation (Days 0-3) then returned to baseline levels by Day 18, when mineralized nodules were forming. Treatment of FRC cells with BMP-7 enhanced ET-1 levels by three-fold on Day 3 and enhanced nodule formation by 15-fold on Day 26. To determine whether ET-1 was involved in an autocrine manner in BMP-7-induced nodule formation, cells were cultured in the presence of BMP-7 and BQ-123, an ET(A) receptor antagonist. BQ-123 had no effect on nodule formation in control or BMP-7-treated cells, indicating that osteoblast-derived ET-1 regulates other cell types in vivo during the bone formation process.  相似文献   

18.
19.
The goal of this study is to characterize the epithelioid-like human marrow sac cells that separate the myeloid and osteoblast populations in situ and to determine if they express osteoblast cytoplasmic markers. Tubular segments of femoral diaphyseal bone were obtained from healthy young (4-8 yr) male and female patients undergoing femoral shortening surgeries. The interface between bone and marrow was examined by scanning (SEM) and transmission electron microscopy (TEM). The marrow sac cells were isolated and cultured in a-MEM medium with and without dexamethasone, glycerophosphate, and ascorbic acid [DGPA]. Alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2) and osteocalcin were evaluated. In the SEM, the marrow sac presented a distinctive pattern of large overlapping cells. TEM studies showed that marrow sac was one or two cells thick, which were attenuated with elongated nuclei, few cellular organelles, and appeared to display intercellular gap junctions. In culture, the marrow sac cells stained positively for ALP and BMP-2, and their expression was enhanced two- to three- fold when the cells were grown in DGPA. DGPA did not enhance osteocalcin expression. The cells of the human marrow sac reside proximate to endosteal osteoblasts and express osteoblastic markers. It is possible that these stromal cells constitute an osteoprogenitor pool from which replacement osteoblasts are recruited, and that they are involved in normal bone formation and in bone diseases (e.g., osteoporosis and osteopenia).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号