首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Physiologic relaxation of vascular smooth muscle is induced by the cyclic guanosine monophosphate (cGMP)- dependent protein kinase Iα enzyme (cGKIα), which activates myosin phosphatase (MLCP). This activation process is thought to occur through the interaction involving both N- and C-terminal leucine zipper coiled-coil (LZCC) domains of the kinase enzyme (cGKIα) with the myosin binding subunit (MBS) of MLCP. In this review, I summarize how to define the LZCC domains in both N-terminal cGKIα(1-59) and C-terminal MBS proteins using predictive and experimental methods, how to make a rapid and accurate structure determination of a cGKIα(1-59) molecule using NMR's residual dipolar coupling (RDC) measurements, and how to indentify the existence of a weak protein interaction between N-terminal LZCC domain (cGKIα(1-59)) and a LZCC domain (MBSCT42) within the C-terminal MBS. In addition, the location and orientation of the residues in LZCC proteins can be readily visualized using a novel diagram, the so-called "wenxiang diagram", which is more advantageous than traditional helical wheel diagrams in analyzing LZCC protein structures and their action mechanisms. Using the composed wenxiang diagrams, we have characterized the interaction between cGKIα(1- 59) and another LZCC molecule (MBSCT42), and deduced that the most affected residues of these two LZCC molecules might be at the positions d, a, e and g. These studies and findings are also covered in this review. It is intriguing to see that the successful incorporation of wenxiang diagrams and NMR spectroscopy in the LZCC structural and functional studies may provide some insights into protein-protein interaction mechanisms.  相似文献   

2.
3.
Myosin subfragment 1 (S1) with SH1 (Cys(707)) and SH2 (Cys(697)) groups cross-linked by p-phenylenedimaleimide (pPDM-S1) is thought to be an analog of the weakly bound states of myosin bound to actin. The structural properties of pPDM-S1 were compared in this study to those of S1.ADP.BeF(x) and S1.ADP.AlF(4)(-), i.e., the established structural analogs of the myosin weakly bound states. To distinguish between the conformational effects of SH1-SH2 cross-linking and those due to their monofunctional modification, we used S1 with the SH1 and SH2 groups labeled with N-phenylmaleimide (NPM-S1) as a control in our experiments. The state of the nucleotide pocket was probed using a hydrophobic fluorescent dye, 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]phen ylboronic acid (PPBA). Differential scanning calorimetry (DSC) was used to study the thermal stability of S1. By both methods the conformational state of pPDM-S1 was different from that of unmodified S1 in the S1.ADP.BeF(x) and S1.ADP.AlF(4)(-) complexes and closer to that of nucleotide-free S1. Moreover, BeF(x) and AlF(4)(-) binding failed to induce conformational changes in pPDM-S1 similar to those observed in unmodified S1. Surprisingly, when pPDM cross-linking was performed on S1.ADP.BeF(x) complex, ADP.BeF(x) protected to some extent the nucleotide pocket of S1 from the effects of pPDM modification. NPM-S1 behaved similarly to pPDM-S1 in our experiments. Overall, this work presents new evidence that the conformational state of pPDM-S1 is different from that of the weakly bound state analogs, S1.ADP.BeF(x) and S1.ADP.AlF(4)(-). The similar structural effects of pPDM cross-linking of SH1 and SH2 groups and their monofunctional labeling with NPM are ascribed to the inhibitory effects of these modifications on the flexibility/mobility of the SH1-SH2 helix.  相似文献   

4.
Phospholipase Cδ3 (PLCδ3) is a key enzyme in phosphoinositide metabolism, however, its physiological function remains unknown. Here we identified the Myosin VI (Myo6) as a binding partner of the PLCδ3. A tail region containing IQ motif and the cargo-binding domain of Myo6, and the C2 domain and PH domain of PLCδ3 were responsible sites for the interaction. Since Myo6 has been well analyzed as one of the "deafness genes" in mouse and human, we examined the expression pattern of PLCδ3 mRNA in the inner ear. In situ hybridization analysis indicated that both Myo6 and PLCδ3 were clearly and limitedly co-expressed in the inner and outer hair cells in the cochlea. Although actin structure of the stereocilia of hair cells seemed to be normal and no detectable hearing defect was observed in PLCδ3 knockout (KO) mice, stable PLCδ3 knockdown in Caco-2 colonic carcinoma cells caused abnormal actin structure of microvilli. In addition, dramatic decrease in expression of Myo6 was observed in intestine of PLCδ3KO mice, where microvilli structure is well developed. These results indicate that PLCδ3 could participate in stability of microvilli structure via regulating and anchoring of Myo6 to plasma membrane.  相似文献   

5.
In the present work we examined the effect of crosslinking of polymerized and monomeric actin with glutaraldehyde, EDC and DSS on: 1) binding of actin to HMM in solution; 2) activation of HMM ATPase; 3) sliding movement of actin on glass-attached myosin; 4) properties of actin itself, like polymerizability and exchangeability of tightly bound nucleotide. The obtained data show that inhibition of sliding cannot be explained only by changes in the extent of activation of HMM ATPase and binding of actin to HMM; this result emphasizes the role of structural properties of actin in the mechanism of movement generation.  相似文献   

6.
Summary Human and rabbit masticatory muscles were analyzed immuno-and enzyme-histochemically using antibodies specific to cardiac , slow and fast myosin heavy chain isoforms. In human masseter, temporalis, and lateral pterygoid muscle cardiac myosin heavy chain is found in fibres that contain either fast, or fast and slow myosin heavy chain. In rabbit masseter, temporalis and digastric muscles, fibres are present that express cardiac myosin heavy chain either exclusively, or concomitantly with slow myosin heavy chain or fast myosin heavy chain. Our results demonstrate a much broader distribution of cardiac myosin heavy chain than hitherto recognized and these might explain in part the specific characteristics of masticatory muscles. The cardiac myosin heavy chain is only found in skeletal muscles originating from the cranial part of the embryo (including the heart muscle) suggesting that its expression might be determined by the developmental history of these muscles.  相似文献   

7.
Actin- and microtubule-based motors can propel different cargos along filaments. Within cells, they control the distribution of membrane-bound compartments by performing complementary tasks. Organelles make long journeys along microtubules, with class V myosins ensuring their capture and their dispersal in actin-rich regions. Myosin Va is recruited on to diverse organelles, such as melanosomes and secretory vesicles, by a mechanism involving Rab GTPases. The role of myosin Va in the recruitment of secretory vesicles at the plasma membrane reveals that the cortical actin network cannot merely be seen as a physical barrier hindering vesicle access to release sites. In neurons, myosin Va controls the targeting of IP(3) (inositol 1,4,5-trisphosphate)-sensitive Ca(2+) stores to dendritic spines and the transport of mRNAs. These defects probably account for the severe neurological symptoms observed in Griscelli syndrome due to mutations in the MYO5A gene.  相似文献   

8.
This review, dedicated to the memory of Professor Setsuro Ebashi, focuses on our current work investigating the cellular functions and regulation of the unique unconventional motor, myosin VI. This myosin, unlike all the other myosins so far studied, moves towards the minus end of actin filaments and has been implicated in a wide range of cellular processes such as endocytosis, exocytosis, cell migration, cell division and cytokinesis. Myosin VI’s involvement in these cellular pathways is mediated by its interaction with specific adaptor proteins and is regulated by multiple regulatory signals and modifications such as calcium ions, PtdIns(4,5)P2 (PIP2) and phosphorylation. Understanding the functions of myosin VI within the cell and how it is regulated is now of utmost importance given the recent observations that it is associated with a number of human disorders such as deafness and cancers.  相似文献   

9.
Biomechanics and Modeling in Mechanobiology - Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of...  相似文献   

10.
11.
Evidence is presented that the myosin subfragment-1–ADP complex, generated by the addition of Mg2+ and ADP to subfragment 1, is an intermediate within the myosin Mg2+-dependent adenosine triphosphatase (ATPase) turnover cycle. The existence of this species as a steady-state intermediate at pH8 and 5°C is demonstrated by fluorescence measurements, but its concentration becomes too low to measure at 21°C. This arises because there is a marked temperature-dependence on the rate of the process controlling ADP dissociation from subfragment 1 (rate=1.4s−1 at 21°C, 0.07s−1 at 5°C). In the ATPase pathway this reaction is in series with a relatively temperature-insensitive process, namely an isomerization of the subfragment-1–product complex (rate=0.055s−1 at 21°C, 0.036s−1 at 5°C). By means of studies on the Pi inhibition of nucleotide-association rates, a myosin subfragment-1–Pi complex was characterized with a dissociation equilibrium constant of 1.5mm. Pi appears to bind more weakly to the myosin subfragment-1–ADP complex. The studies indicate that Pi dissociates from subfragment 1 at a rate greater than 40s−1, and substantiates the existence of a myosin-product isomerization before product release in the elementary processes of the Mg2+-dependent ATPase. In this ATPase mechanism Mg2+ associates as a complex with ATP and is released as a complex with ADP. In 0.1m-KCl at pH8 1.0mol of H+ is released/mol of subfragment 1 concomitant with the myosin-product isomerization or Pi dissociation, and 0.23 mol of H+ is released/mol of subfragment when ATP binds to the protein, but 0.23 mol of H+ is taken up again from the medium when ADP dissociates. Within experimental sensitivity no H+ is released into the medium in the step involving ATP cleavage.  相似文献   

12.
Hypertrophic cardiomyopathy (HCM) caused by mutations in cardiac myosin–binding protein-C (cMyBP-C) is a heterogenous disease in which the phenotypic presentation is influenced by genetic, environmental, and developmental factors. Though mouse models have been used extensively to study the contractile effects of cMyBP-C ablation, early postnatal hypertrophic and dilatory remodeling may overshadow primary contractile defects. The use of a murine engineered cardiac tissue (mECT) model of cMyBP-C ablation in the present study permits delineation of the primary contractile kinetic abnormalities in an intact tissue model under mechanical loading conditions in the absence of confounding remodeling events. We generated mechanically integrated mECT using isolated postnatal day 1 mouse cardiac cells from both wild-type (WT) and cMyBP-C–null hearts. After culturing for 1 wk to establish coordinated spontaneous contraction, we measured twitch force and Ca2+ transients at 37°C during pacing at 6 and 9 Hz, with and without dobutamine. Compared with WT, the cMyBP-C–null mECT demonstrated faster late contraction kinetics and significantly faster early relaxation kinetics with no difference in Ca2+ transient kinetics. Strikingly, the ability of cMyBP-C–null mECT to increase contractile kinetics in response to adrenergic stimulation and increased pacing frequency were severely impaired. We conclude that cMyBP-C ablation results in constitutively accelerated contractile kinetics with preserved peak force with minimal contractile kinetic reserve. These functional abnormalities precede the development of the hypertrophic phenotype and do not result from alterations in Ca2+ transient kinetics, suggesting that alterations in contractile velocity may serve as the primary functional trigger for the development of hypertrophy in this model of HCM. Our findings strongly support a mechanism in which cMyBP-C functions as a physiological brake on contraction by positioning myosin heads away from the thin filament, a constraint which is removed upon adrenergic stimulation or cMyBP-C ablation.  相似文献   

13.
The Drosophila body axes are established in the oocyte during oogenesis. Oocyte polarization is initiated by Gurken, which signals from the germline through the epidermal growth factor receptor (Egfr) to the posterior follicle cells (PFCs). In response the PFCs generate an unidentified polarizing signal that regulates oocyte polarity. We have identified a loss-of-function mutation of flapwing, which encodes the catalytic subunit of protein phosphatase 1β (PP1β) that disrupts oocyte polarization. We show that PP1β, by regulating myosin activity, controls the generation of the polarizing signal. Excessive myosin activity in the PFCs causes oocyte mispolarization and defective Notch signaling and endocytosis in the PFCs. The integrated activation of JAK/STAT and Egfr signaling results in the sensitivity of PFCs to defective Notch. Interestingly, our results also demonstrate a role of PP1β in generating the polarizing signal independently of Notch, indicating a direct involvement of somatic myosin activity in axis formation.  相似文献   

14.
M Gautel  O Zuffardi  A Freiburg    S Labeit 《The EMBO journal》1995,14(9):1952-1960
Cardiac myosin binding protein-C (cardiac MyBP-C, cardiac C protein) belongs to a family of proteins implicated in both regulatory and structural functions of striated muscle. For the cardiac isoform, regulatory phosphorylation in vivo by cAMP-dependent protein kinase (PKA) upon adrenergic stimulation is linked to modulation of cardiac contraction. The sequence of human cardiac MyBP-C now reveals regulatory motifs specific for this isoform. Site-directed mutagenesis identifies a LAGGGRRIS loop in the N-terminal region of cardiac MyBP-C as the key substrate site for phosphorylation by both PKA and a calmodulin-dependent protein kinase associated with the native protein. Phosphorylation of two further sites by PKA is induced by phosphorylation of this isoform-specific site. This phosphorylation switch can be mimicked by aspartic acid instead of phosphoserine. Cardiac MyBP-C is therefore specifically equipped with sensors for adrenergic regulation of cardiac contraction, possibly implicating cardiac MyBP-C in cardiac disease. The gene coding for cardiac MyBP-C has been assigned to the chromosomal location 11p11.2 in humans, and is therefore in a region of physical linkage to subsets of familial hypertrophic cardiomyopathy (FHC). This makes cardiac MyBP-C a candidate gene for chromosome 11-associated FHC.  相似文献   

15.
Kłopocka W  Redowicz MJ 《Protoplasma》2004,224(1-2):113-121
Summary. The highly motile free-living unicellular organism Amoeba proteus has been widely used as a model to study cell motility. However, the molecular mechanisms underlying its unique locomotion are still scarcely known. Recently, we have shown that blocking the amoebaes endogenous Rac- and Rho-like proteins led to distinct and irreversible changes in the appearance of these large migrating cells as well as to a significant inhibition of their locomotion. In order to elucidate the mechanism of the Rho pathway, we tested the effects of blocking the endogenous Rho-dependent kinase (ROCK) by anti-ROCK antibodies and Y-27632, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride, a specific inhibitor of ROCK, on migrating amoebae and the effect of the Rho and ROCK inhibition on the actin-activated Mg-ATPase of the cytosolic fraction of the amoebae. Amoebae microinjected with anti-ROCK inhibitors remained contracted and strongly attached to the glass surface and exhibited an atypical locomotion. Despite protruding many pseudopodia that were advancing in various directions, the amoebae could not effectively move. Immunofluorescence studies showed that ROCK-like protein was dispersed throughout the cytoplasm and was also found in the regions of actin–myosin II interaction during both isotonic and isometric contraction. The Mg-ATPase activity was about two- to threefold enhanced, indicating that blocking the Rho/Rho-dependent kinase activated myosin. It is possible then that in contrast to the vertebrate cells, the inactivation of Rho/Rho-dependent kinase in amoebae leads to the activation of myosin II and to the observed hypercontracted cells which cannot exert effective locomotion.Correspondence and reprints: Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur ulica, 02-093 Warsaw, Poland.  相似文献   

16.
17.
Human familial hypertrophic cardiomyopathy is the most common Mendelian cardiovascular disease worldwide. Among the most severe presentations of the disease are those in families heterozygous for the mutation R403Q in β-cardiac myosin. Mice heterozygous for this mutation in the α-cardiac myosin isoform display typical familial hypertrophic cardiomyopathy pathology. Here, we study cardiomyocytes from heterozygous 403/+ mice. The effects of the R403Q mutation on force-generating capabilities and dynamics of cardiomyocytes were investigated using a dual carbon nanofiber technique to measure single-cell parameters. We demonstrate the Frank-Starling effect at the single cardiomyocyte level by showing that cell stretch causes an increase in amplitude of contraction. Mutant 403/+ cardiomyocytes exhibit higher end-diastolic and end-systolic stiffness than +/+ cardiomyocytes, whereas active force generation capabilities remain unchanged. Additionally, 403/+ cardiomyocytes show slowed relaxation dynamics. These phenotypes are consistent with increased end-diastolic and end-systolic chamber elastance, as well as diastolic dysfunction seen at the level of the whole heart. Our results show that these functional effects of the R403Q mutation are cell-intrinsic, a property that may be a general phenomenon in familial hypertrophic cardiomyopathy.  相似文献   

18.
The recently solved structure of the myosin VI motor demonstrates that the unique insert at the end of the motor is responsible for the reversal of the normal myosin directionality. A second class-specific insert near the nucleotide-binding pocket contributes to myosin VI's unique kinetic tuning, allowing it to function either as an actin-based transporter or as an anchoring protein. Recent biochemical and biophysical studies have shown that the native molecule can form dimers upon clustering, and cell biological studies have demonstrated that it clearly does play both transport and anchoring roles in cells. These mechanistic insights allow us to speculate on how unusual aspects of myosin VI structure and function allow it to fill unique niches in cells.  相似文献   

19.
Forer A  Fabian L 《Protoplasma》2005,225(1-2):1-4
Summary. BDM (2,3-butanedione monoxime) has been used extensively to inhibit nonmuscle myosin. However, recent articles raise the question of what BDM actually does, because of experiments in which BDM did not affect the actin-activated ATPase of nonmuscle myosins. We describe results that indicate that BDM indeed inhibits motility due to nonmuscle myosins: in many different cells BDM has the same effects as anti-actin agents and/or as other anti-myosin agents, and BDM slows or stops the sliding between actin filaments and myosin in vitro. We discuss how the two sets of apparently contradictory results might be resolved, and we suggest possible experiments that might clarify the contradictory interpretations. Correspondence and reprints: Biology Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号