首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication-defective herpes simplex virus (HSV) strains elicit durable immune responses and protect against virulent HSV challenge in mice, despite being unable to establish latent infection in neuronal cells. Mechanisms for generating long-lived immunity in the absence of viral persistence remain uncertain. In animals immunized with replication-defective HSV, durable serum immunoglobulin G (IgG) responses were elicited. Surprisingly, Western blot analyses revealed that the specificities of antiviral IgG changed over time, and antibody reactivity to some viral proteins was detected only very late. Thus, some of the durable IgG activity appeared to be contributed by either new or significantly enhanced antibody responses at late times. Following immunization, radiation bone marrow-chimeric mice lacking complement receptors CD21 and CD35 on stromal cells elicited only short-lived serum IgG and failed to mount recall responses to subsequent HSV exposure. Our results suggest that complement-mediated retention of viral antigens by stromal cells, such as follicular dendritic cells, is critical for optimal maintenance of antibody responses and B-cell memory following vaccination with replication-defective HSV.  相似文献   

2.
It has previously been reported that herpes simplex virus (HSV)-2 gD DNA vaccine preferentially induces T-helper (Th) 1-type cellular immune responses, whereas the literature supports the view that subunit vaccines tend to induce potent antibody responses, supporting a Th2 bias. Here, using an HSV gD vaccine model, we investigated whether priming and boosting with a DNA or protein vaccine could induce both potent antibody and Th1-type cellular immune responses. When animals were primed with DNA and boosted with protein, both antibody and Th-cell proliferative responses were significantly enhanced. Furthermore, production of Th1-type cytokines (interleukin-2, interferon-gamma) was enhanced by DNA priming-protein boosting. In contrast, protein priming-DNA boosting produced antibody levels similar to those following protein-protein vaccination but failed to further enhance Th-cell proliferative responses or cytokine production. DNA priming-protein boosting resulted in an increased IgG2a isotype (a Th1 indicator) profile, similar to that induced by DNA-DNA vaccination, whereas protein priming-DNA boosting caused an increased IgG1 isotype (a Th2 indicator) profile similar to that seen after protein-protein vaccination. This result indicates that preferential induction of IgG1 or IgG2a isotype is determined by the type of priming vaccine used. Thus, this study suggests that HSV DNA priming-protein boosting could elicit both potent Th1-type cellular immune responses and antibody responses, both of which likely are important for protection against HSV infection.  相似文献   

3.
Peptide-displaying bacteriophages induce mimotope-specific antibody responses, suggesting a novel application of phage-display library as bacteriophage vaccine. We examined the antibody response against M13 phage in mice induced by an i.p. administration of M13 phage in phosphate-buffered saline. We showed here that firstly, mice showed strong IgG antibody responses, particularly, in IgG2b, IgG2c, and IgG3 subclasses even in primary responses. Secondly, IgG production in primary response is totally dependent on MyD88 signaling. These responses were almost comparable, but slightly weaker, in TLR2-, TLR4- and TLR7-deficient mice relative to wild-type mice, suggesting that this enhancing effect is not due to plausible LPS contamination. Thirdly, although primary IgG1 response was not detected in wild-type mice, remarkable IgG1 response was induced in TLR9-deficient mice, suggesting that TLR9 pathway functions as regulatory, but not a simple augmenting signaling cascade, and furthermore, the enhanced IgG1 response was not due to adjuvant effect of single-stranded DNA derived from M13 phage. Thus, innate immunity including TLR regulation is crucial for M13 phage vaccine design.  相似文献   

4.
The interaction between B7 costimulation molecules on antigen-presenting cells and CD28 on antigen-responsive T cells is essential for T-cell activation and maturation of immune responses to herpes simplex virus (HSV) infection. Vaccine-induced immune responses also depend upon adequate upregulation of B7 costimulation molecules, but this signal may be limiting for replication-defective virus vaccines. We investigated whether expression of B7 costimulation molecules by a prototypical replication-defective antiviral vaccine could enhance immune responses to the vaccine and whether B7-1 and B7-2 would be similarly effective. We altered an ICP8(-) replication-defective strain of HSV type 2 (HSV-2), 5BlacZ, to encode either murine B7-1 or B7-2. B7 molecule expression was detected on the surface of cells infected in vitro and at the RNA level in tissue of immunized mice. Immunization of B7-1/B7-2 knockout mice with B7-encoding virus modestly expanded the number of gamma interferon-producing T cells and significantly augmented class-switched HSV-specific antibody responses compared with the parental virus. Mice immunized with either B7-expressing virus showed less replication of challenge virus in the genital mucosa than mice immunized with 5BlacZ, markedly fewer signs of genital and neurological disease, and little weight loss. Virtually all mice immunized with B7-encoding virus survived challenge with a large dose of HSV-2, whereas most 5BlacZ-immunized mice succumbed to infection. These results indicate that protective immune responses can be enhanced by the inclusion of host B7 costimulation molecules in a prototypical replication-defective HSV vaccine against HSV-2 genital infection and that B7-1 and B7-2 induce immune responses with similar capacities to fight HSV-2 infection.  相似文献   

5.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   

6.
Recombinant viruses are attractive candidates for the development of novel vaccines. A number of viruses have been engineered as vaccine vectors to express antigens from other pathogens or tumors. Inoculation of susceptible animals with this type of recombinant virus results in the induction of both humoral and cellular immune responses directed against the foreign antigens. A general problem to this approach is that existing immunity to the vector can diminish or completely abolish the efficacy of the viral vector. In this study, we investigated whether poliovirus recombinants are capable of inducing effective immunity to the foreign antigen in previously vaccinated animals. Antipoliovirus immunity was induced in susceptible mice by intraperitoneal immunization with live poliovirus. Immunized mice developed antibodies directed against capsid proteins that effectively neutralized poliovirus in vitro and protected animals from a lethal challenge with a high dose of pathogenic poliovirus. To test whether preexisting immunity reduces the efficacy of vaccination with recombinant poliovirus, immunized mice were inoculated with a recombinant poliovirus expressing the C-terminal half of chicken ovalbumin (Polio-Ova). Animals developed ovalbumin-specific antibodies and cytotoxic T lymphocytes (CTL). While the antibody titers observed in preimmune and naive mice were similar, the overall CTL response appeared to be reduced in preimmune mice. Importantly, vaccination with Polio-Ova was able to effectively protect preimmune mice against lethal challenge with a tumor expressing the antigen. Thus, preexisting immunity to poliovirus does not compromise seriously the efficacy of replication-competent poliovirus vaccine vectors. These results contrast with those observed for other viral vaccine vectors and suggest that preexisting immunity does not equally affect the vaccine potential of individual viral vectors.  相似文献   

7.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

8.
The smallpox vaccine is widely considered the gold standard for human vaccines, yet the key antibody targets in humans remain unclear. We endeavored to identify a stereotypic, dominant, mature virion (MV) neutralizing antibody target in humans which could be used as a diagnostic serological marker of protective humoral immunity induced by the smallpox vaccine (vaccinia virus [VACV]). We have instead found that diversity is a defining characteristic of the human antibody response to the smallpox vaccine. We show that H3 is the most immunodominant VACV neutralizing antibody target, as determined by correlation analysis of immunoglobulin G (IgG) specificities to MV neutralizing antibody titers. It was determined that purified human anti-H3 IgG is sufficient for neutralization of VACV; however, depletion or blockade of anti-H3 antibodies revealed no significant reduction in neutralization activity, showing anti-H3 IgG is not required in vaccinated humans (or mice) for neutralization of MV. Comparable results were obtained for human (and mouse) anti-L1 IgG and even for anti-H3 and anti-L1 IgG in combination. In addition to H3 and L1, human antibody responses to D8, A27, D13, and A14 exhibited statistically significant correlations with virus neutralization. Altogether, these data indicate the smallpox vaccine succeeds in generating strong neutralizing antibody responses not by eliciting a stereotypic response to a single key antigen but instead by driving development of neutralizing antibodies to multiple viral proteins, resulting in a "safety net" of highly redundant neutralizing antibody responses, the specificities of which can vary from individual to individual. We propose that this is a fundamental attribute of the smallpox vaccine.  相似文献   

9.
Neonates are severely compromised in the ability to generate an immune response to pathogens and thus rely heavily on maternally derived immunity that is acquired by transplacental and transmammary means. The passive transfer of maternal herpes simplex virus (HSV)-specific antibody is critical in determining the outcome of neonatal HSV infection. In adults, psychological stress alters immune responsiveness via the increased level of corticosterone that is produced as a result of hypothalamic-pituitary-adrenal axis activation. Although the behavioral and neuroendocrine effects of pre- and postnatal stress-induced increases in corticosterone are well documented, the effects of maternal stress on the efficacy of prenatally transferred and neonatally developed viral immunity has yet to be addressed. By using a well-established prenatal restraint-and-light stress mouse model, we investigated the effects of increased maternal corticosterone on the passive transfer of total and HSV-specific immunoglobulin G (IgG) antibody and subsequent neonatal susceptibility to HSV infection. Serum corticosterone levels in pregnant mice were significantly increased in response to restraint-and-light stress, and fetuses derived from these stressed mice had significantly elevated levels of corticosterone. Despite the increases in corticosterone, the passive transfer of total and HSV-specific IgG antibody persisted and, in turn, protected the neonate from systemic viral spread. Therefore, prenatal stress did not increase the susceptibility of neonates to HSV type 2-associated mortality. These findings demonstrate the resiliency of the passive transfer of protective HSV-specific immunity under conditions of acute psychological stress.  相似文献   

10.
Herpes simplex virus 2 (HSV-2) and, to a lesser extent, HSV-1 cause the majority of sexually transmitted genital ulcerative disease. No effective prophylactic vaccine is currently available. Replication-defective HSV stimulates immune responses in animals but produces no progeny virus, making it potentially useful as a safe form of live vaccine against HSV. Because it does not replicate and spread in the host, however, replication-defective virus may have relatively limited capacity to solicit professional antigen presentation. We previously demonstrated that in mice devoid of B7-1 and B7-2 costimulation molecules, replication-defective HSV-2 encoding B7-1 or B7-2 induces stronger immune responses and protection against HSV-2 challenge than immunization with replication-defective virus alone. Here, we vaccinated wild-type mice fully competent to express endogenous B7 costimulation molecules with replication-defective HSV-2 or replication-defective virus encoding B7-2 and compared their capacities to protect against vaginal HSV-2 infection and disease. Replication-defective virus encoding B7-2 induced more IFN-γ-producing CD4 T cells than did replication-defective virus alone. Immunization with B7-2-expressing virus decreased challenge virus replication in the vaginal mucosa, genital and neurological disease, and mortality more effectively than did immunization with the parental replication-defective virus. Prior immunization with B7-expressing, replication-defective virus also effectively suppressed infection of the nervous system compared to immunization with the parental virus. Thus, B7 costimulation molecules expressed at the site of HSV infection can enhance vaccine efficacy even in a fully immunocompetent host.  相似文献   

11.
Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.  相似文献   

12.
Success in resolving hepatitis C virus (HCV) infection has been correlated to vigorous, multispecific, and sustained CD8(+) T-cell response in humans and chimpanzees. The efficacy of inducing T-cell-mediated immunity by recombinant serotype 5 adenovirus vector has been proven in many animal models of infectious diseases, but its immunogenicity can be negatively influenced by preexisting immunity against the vector itself. To evaluate the less prevalent adenovirus serotype 6 (Ad6) as an alternative vector for and HCV vaccine development, we have generated serotype 5 and 6 adenoviral vectors directing expression of the nonstructural region of HCV (MRKAd5-NSmut and MRKAd6-NSmut). Immunogenicity studies in mice showed that the two vectors induced comparable T-cell responses but that only MRKAd6-NSmut was not suppressed in the presence of anti-Ad5 immunity. In contrast, preexisting anti-Ad5 immunity dramatically blunted the immunogenicity of the serotype 5-based HCV vector. Furthermore, MRKAd6-NSmut showed equivalent potency, breadth, and longevity of HCV-specific T-cell responses in rhesus macaques as the corresponding Ad5-based vector over a wide range of doses and was capable of boosting DNA-primed animals even if administered at low doses. These data support the use of the MRKAd6-NSmut for anti-HCV immunotherapy and, more generally, for the Ad6 serotype as a better genetic vaccine vehicle than Ad5.  相似文献   

13.
Respiratory syncytial virus (RSV) causes severe respiratory disease in infants and a vaccine is highly desirable. The fusion (F) protein of RSV is an important vaccine target, but the contribution of F-specific T cells to successful vaccination remains unclear. We studied the immune response to vaccination of mice with a recombinant Sendai virus expressing RSV F (rSeV F). rSeV F induced protective neutralizing antibody and RSV F-specific CTL responses. T cell immunity was stronger than that induced by recombinant vaccinia virus (rVV F), a well characterized reference vector. Vaccination of antibody-deficient mice showed that vaccine-induced RSV F-specific T cells were sufficient for protective immunity. rSeV F induced T cell immunity in the presence of neutralizing antibodies, which did not impair the vaccine response. Although the F protein only contains a subdominant CTL epitope, vaccination with rSeV F is sufficient to induce protective T cell immunity against RSV in mice.  相似文献   

14.
In our ongoing efforts to develop a vaccine against Streptococcus suis infection, we tested the potential of S. suis enolase (SsEno), a recently described S. suis adhesin with fibronectin-binding activity, as a vaccine candidate in a mouse model of S. suis -induced septicemia and meningitis. Here, we show that SsEno is highly recognized by sera from convalescent pigs and is highly immunogenic in mice. Subcutaneous immunization of mice with SsEno elicited strong immunoglobulin G (IgG) antibody responses. All four IgG subclasses were induced, with IgG1, IgG2a and IgG2b representing the highest titers followed by IgG3. However, SsEno-vaccinated and nonvaccinated control groups showed similar mortality rates after challenge infection with the highly virulent S. suis strain 166'. Similar results were obtained upon passive immunization of mice with hyperimmunized rabbit IgG anti-SsEno. We also showed that anti-SsEno antibodies did not increase the ability of mouse phagocytes to kill S. suis in vitro . In conclusion, these data demonstrate that although recombinant SsEno formulated with Quil A triggers a strong antibody response, it does not confer effective protection against infection with S. suis serotype 2 in mice.  相似文献   

15.
In the current study, we tested the efficacy of the mixture of naloxone, an opioid receptor antagonist, and alum, as a new adjuvant, in the induction of humoral and cellular immunity in response to heat-killed Salmonella typhimurium (HKST) as a model vaccine. BALB/c mice were divided into five groups. Mice in the experimental groups received either the HKST vaccine alone or in combination with the adjuvant alum, naloxone or the alum-naloxone mixture. Mice in the negative control group received phosphate-buffered saline. All mice were immunized two times on days 0 and 14. Two weeks after the last immunization, immune responses to S. typhimurium were assessed. Our results indicated that the administration of the alum-naloxone mixture as an adjuvant increased the ability of the HKST vaccine to enhance lymphocyte proliferation, shifted the immune response towards a T-helper 1 (Th1) pattern and increased S. typhimurium-specific immunoglobulin G (IgG), IgG2a, IgG1 and the ratio of IgG2a to IgG1. This resulted in improved protective immunity against S. typhimurium. In conclusion, the administration of the alum-naloxone mixture as an adjuvant, in combination with the HKST vaccine, can enhance both humoral and cellular immunity and shift the immune responses to a Th1 pattern.  相似文献   

16.
Recombinant Semliki Forest virus (rSFV) enables high-level, transient expression of heterologous proteins in vivo, and is believed to be a superior vector for genetic vaccination, compared with the conventional DNA plasmid. Nonetheless, the efficacy of rSFV-based vaccine in eliciting human immune responses has not been tested. We used a Trimera mouse model, consisting of lethally irradiated BALB/c host reconstituted with nonobese diabetes/severe combined immunodeficiency (NOD/SCID) bone marrow plus human peripheral blood mononuclear cells (PBMCs), to characterize the in vivo immune responses against rSFV-encoded human melanoma antigen MAGE-3. MAGE-3–specific antibody and cytotoxic T lymphocyte (CTL) activity were detected by ELISA and 51Cr-release assay, respectively, and the responses were compared with those induced by a plasmid DNA vaccine encoding the same antigen. The results showed that rSFV vaccine could elicit human MAGE-3–specific antibody and CTL response in the Trimera mice, and the antitumor responses were more potent than those by plasmid DNA vaccination. This is the first report to evaluate human immune responses to an rSFV-based tumor vaccine in the Trimera mouse model. Our data suggest that rSFV vector is better than DNA plasmid in inducing protective immunity, and the Trimera model may serve as a general tool to evaluate the efficacy of tumor vaccines in eliciting human primary immune response in vivo.  相似文献   

17.
A candidate live-virus vaccine strain of Venezuelan equine encephalitis virus (VEE) was configured as a replication-competent vector for in vivo expression of heterologous immunogens. Three features of VEE recommend it for use as a vaccine vector. (i) Most human and animal populations are not already immune to VEE, so preexisting immunity to the vector would not limit expression of the heterologous antigen. (ii) VEE replicates first in local lymphoid tissue, a site favoring the induction of an effective immune response. (iii) Parenteral immunization of rodents and humans with live, attenuated VEE vaccines protects against mucosal challenge, suggesting that VEE vaccine vectors might be used successfully to protect against mucosal pathogens. Upon subcutaneous (s.c.) inoculation into the footpad of mice, a VEE vector containing the complete influenza virus hemagglutinin (HA) gene expressed HA in the draining lymph node and induced anti-HA immunoglobulin G (IgG) and IgA serum antibodies, the levels of which could be increased by s.c. booster inoculation. When immunized mice were challenged intranasally with a virulent strain of influenza virus, replication of challenge virus in their lungs was restricted, and they were completely protected from signs of disease. Significant reduction of influenza virus replication in the nasal epithelia of HA vector-immunized mice suggested an effective immunity at the mucosal surface. VEE vaccine vectors represent an alternative vaccination strategy when killed or subunit vaccines are ineffective or when the use of a live attenuated vaccine might be unsafe.  相似文献   

18.
An effective vaccine for AIDS may require development of novel vectors capable of eliciting long-lasting immune responses. Here we report the development and use of replication-competent and replication-defective strains of recombinant herpes simplex virus (HSV) that express envelope and Nef antigens of simian immunodeficiency virus (SIV). The HSV recombinants induced antienvelope antibody responses that persisted at relatively stable levels for months after the last administration. Two of seven rhesus monkeys vaccinated with recombinant HSV were solidly protected, and another showed a sustained reduction in viral load following rectal challenge with pathogenic SIVmac239 at 22 weeks following the last vaccine administration. HSV vectors thus show great promise for being able to elicit persistent immune responses and to provide durable protection against AIDS.  相似文献   

19.
To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.  相似文献   

20.
Abstract

Cochleates represent a powerful subunit vaccine delivery system, uniquely suited to meeting the challenges of modern vaccine development. The intrinsic properties of cochleates lead to advantages in the important areas of safety, stability, efficacy, immune response targeting, combining vaccines to multiple infectious agents, alternate routes of administration (including oral and intranasal), and the generation of mucosal immunity. Cochleates are alternating layers of cations and negatively charged lipids, in stacked sheets or rolled scrolls, with little or no internal aqueous space. Bacterial membrane proteins or the surface glycoproteins of enveloped viruses can be efficiently integrated into the lipid bilayers of the cochleates. The current study investigated the relative amounts of the different classes and subtypes of antibodies generated in mice in response to the oral administration of influenza glycoprotein cochleates. Analysis of circulating antibody revealed significant levels of flu glycoprotein-specific IgG, IgM, and IgA class, and IgGI and IgG2a subtype, antibodies. Oral administration of influenza glycoprotein cochleates also induced antigen-specific salivary IgA levels. The immune responses induced were protective against infection in the respiratory tract following intranasal challenge with live influenza virus. DNA plasmids and oligonucleotides can also be formulated into cochleates. Cochleates containing a plasmid that expresses the human immunodeficiency virus, (HIV-1), proteins env (gp160), rev, and tat, in mammalian cells, was given to mice orally or by intramuscular injection. Two oral administrations yielded strong splenocyte cytolytic and proliferative responses. These cellular responses were essentially the same as those obtained by analogous intramuscular injection of DNA cochleates. Very small quantities of encochleated DNA were required to induce these responses, whereas a higher dose of naked DNA given orally induced no cytotoxic or proliferative responses. Cochleates containing pathogen proteins or DNA, formulated, adjuvanted, and delivered in a variety of ways, represent powerful tools for dissecting and directing the immune response to complex pathogens. The ability of cochleates to induce antibody and cell mediated responses, systemically and on mucosal surfaces, makes them desirable candidates for development of preventive and therapeutic vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号