首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bixby JL 《IUBMB life》2001,51(3):157-163
Virtually every aspect of cellular proliferation and differentiation is regulated by changes in tyrosine phosphorylation. Tyrosine phosphorylation, in turn, is controlled by the opposing activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). PTKs are often transmembrane proteins (receptor PTKs) whose enzymatic activities and signaling functions are tightly regulated by the binding of specific ligands. A variety of transmembrane PTPs has also been identified; these proteins are called receptor PTPs (RPTPs), but in most cases their roles as receptors are very poorly understood. This review discusses the evidence that RPTPs are actually receptors for extrinsic ligands, and the extent to which interactions with putative ligands are known or suspected to cause changes in enzymatic activity. Finally, some of the RPTP substrates believed to be physiologically important are described. The evidence gathered to date suggests that models derived from studies of receptor PTKs may be too simple to account for the diversity and complexity of mechanisms through which ligand binding controls RPTP function.  相似文献   

2.
3.
Protein tyrosine phosphatase receptor type Z (Ptprz/Ptpzeta / RPTPbeta) is a receptor-like protein tyrosine phosphatase (RPTP) which is predominantly expressed in the central nervous system. Tropomyosin-related kinases (Trks) are single-pass transmembrane molecules that are highly expressed in the developing nervous system. Upon the ligand binding of neurotrophins, Trk receptors are activated through autophosphorylation of tyrosine residues; however, the PTPs responsible for the negative regulation of Trk receptors have not been fully elucidated. Here, we identified Ptprz as a specific PTP that efficiently dephosphorylates TrkA as a substrate. Co-expression of Ptprz with Trk receptors in 293T cells showed that Ptprz suppresses the ligand-independent tyrosine phosphorylation of TrkA, but not of TrkB or TrkC, and that Ptprz attenuates TrkA activation induced by nerve growth factor (NGF). Co-expression analyses with TrkA mutants revealed that Ptprz dephosphorylates phosphotyrosine residues in the activation loop of the kinase domain, which are requisite for activation of the TrkA receptor. Consistent with these findings, forced expression of Ptprz in PC12D cells markedly inhibited neurite extension induced by a low dose of NGF. In addition, an increment in the tyrosine phosphorylation of TrkA was observed in the brain of Ptprz-deficient mice. Ptprz thus appears to be one of the PTPs which regulate the activation and signalling of TrkA receptors.  相似文献   

4.
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.  相似文献   

5.
The kit ligand: a cell surface molecule altered in steel mutant fibroblasts.   总被引:79,自引:0,他引:79  
J G Flanagan  P Leder 《Cell》1990,63(1):185-194
The c-kit proto-oncogene, the gene at the mouse W developmental locus, is one of a substantial group of genes that appear to encode cell surface receptors but for which the ligands are unknown. We have characterized the kit ligand by a generally applicable approach: the receptor extracellular domain was genetically fused to placental alkaline phosphatase, producing a soluble receptor affinity reagent with an enzyme tag that could be easily and sensitively traced. This fusion protein, APtag-KIT, was used to demonstrate a specific binding interaction (KD = 3 x 10(-8) M) with a ligand on 3T3 fibroblast lines. In situ staining showed labeling over the whole surface of the 3T3 cells, but not extending to adjacent nonexpressing cells. These findings provide direct molecular evidence that the kit ligand can exist as a cell surface protein. Binding was not detected on 3T3 fibroblasts carrying the steel (Sl) mutation, confirming the biological significance of the binding activity and demonstrating that mutations at the Sl locus affect the expression or structure of the kit ligand.  相似文献   

6.
Receptor-protein tyrosine phosphatases (RPTPs), like receptor tyrosine kinases, regulate neuronal differentiation. While receptor tyrosine kinases are dimerized and activated by extracellular ligands, the extent to which RPTPs dimerize, and the effects of dimerization on phosphatase activity, are poorly understood. We have examined a neuronal type III RPTP, PTPRO; we find that PTPRO can form dimers in living cells, and that disulfide linkages in PTPROs intracellular domain likely regulate dimerization. Dimerization of PTPROs transmembrane and intracellular domains, achieved by ligand binding to a chimeric fusion protein, decreases activity toward artificial peptides and toward a putative substrate, tropomyosin-related kinase C (TrkC). Dephosphorylation of TrkC by PTPRO may be physiologically relevant, as it is efficient, and TrkC and PTPRO can be co-precipitated from transfected cells. Inhibition of PTPROs phosphatase activity by dimerization is interesting, as dimerization of a related RPTP, CD148/PTPRJ, increases activity. Thus, our results suggest a complex relationship between dimerization and activity in type III RPTPs.  相似文献   

7.
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.  相似文献   

8.
Müller CI  Blumbach B  Krasko A  Schröder HC 《Gene》2001,262(1-2):221-230
Reversible tyrosine phosphorylation of proteins is one of the major regulatory physiological events in response to cell-cell- and cell-matrix contact in Metazoa. Previously it was documented that the tyrosine phosphorylating enzymes, the tyrosine kinases (TKs), are autapomorphic characters of Metazoa, including sponges. In this paper the tyrosine dephosphorylating enzymes, the protein-tyrosine phosphatases (PTPs), are studied which can be grouped into two subfamilies, the soluble PTPs and the receptor PTPs (RPTPs). PTPs are characterized by one PTPase domain which interestingly comprises sequence similarity to yeast PTPs. In contrast to the PTPs, the RPTPs - which have been found only in Metazoa - are provided with two PTPase domains. To study the evolution of the RPTPs the full-length size RPTP was cloned from the marine demosponge Geodia cydonium, the phylogenetic oldest metazoan taxon. The 3253 bp long sequence has a putative open reading frame coding for a 999 aa long RPTP which is characterized by two fibronectin (type III; FN-III) domains in the extracellular portion, one intracellular immunoglobulin (Ig)-related domain, and two PTPase domains. Phylogenetic analysis revealed that the sponge FN-III domains form the basis of the metazoan FN-III domain with the common metazoan ancestor. The Ig-related, typical metazoan, module is classified to the disulphide lacking Ig members and represents the phylogenetic earliest member of this group. The beta-sheet propensity was calculated and the characteristic amino acids are present in the seven beta-sheets. The analysis of the two PTPase domains of the sponge RPTP demonstrates that the first domain is closely related to the PTPase domains present in the soluble PTPs, while the second PTPase domain is only distantly related to them. By constructing a rooted phylogenetic cladogram it became overt that the duplication of the PTPase domains must have occurred already in yeast. This interesting finding indicates that two conserved PTPase domains originated from a common ancestor in yeast while the evolutionary novelties, the FN-III domains and the Ig-related module, were added during the transition to the Metazoa. Hence, the tyrosine dephosphorylating enzyme, RPTP, is an example for a modular protein which is composed of ancient modules (PTPase domain[s]) and two metazoan novelties, while the tyrosine phosphorylating enzymes, the TKs, evolved only in Metazoa.  相似文献   

9.
10.
A family of tyrosine kinase receptors related to the product of the eph gene has been described recently. One of these receptors, elk, has been shown to be expressed only in brain and testes. Using a direct expression cloning technique, a ligand for the elk receptor has been isolated by screening a human placenta cDNA library with a fusion protein containing the extracellular domain of the receptor. This isolated cDNA encodes a transmembrane protein. While the sequence of the ligand cDNA is unique, it is related to a previously described sequence known as B61. Northern blot analysis of human tissue mRNA showed that the elk ligand's mRNA is 3.5 kb long and is found in placenta, heart, lung, liver, skeletal muscle, kidney and pancreas. Southern blot analysis showed that the gene is highly conserved in a wide variety of species. Both elk ligand and B61 mRNAs are inducible by tumour necrosis factor in human umbilical vein endothelial cells. In addition, both proteins show promiscuity in binding to the elk and the related hek receptors. Since these two ligand sequences are similar, and since elk and hek are members of a larger family of eph-related receptor molecules, we refer to these ligands as LERKs (ligands for eph-related kinases).  相似文献   

11.
Bisphosphonates (BPs), potent inhibitors of bone resorption which inhibit osteoclasts, have also been shown to act on osteocytes and osteoblasts preventing apoptosis via connexin (Cx) 43 hemichannels and activating the extracellular signal regulated kinases ERKs. We previously demonstrated the presence of a saturable, specific and high affinity binding site for alendronate (ALN) in osteoblastic cells which express Cx43. However, cells lacking Cx43 also bound BPs. Herein we show that bound [3H]-alendronate is displaced by phosphatase substrates. Moreover, similar to Na3VO4, ALN inhibited the activity of transmembrane and cytoplasmic PTPs, pointing out the catalytic domain of phosphatases as a putative BP target. In addition, anti-phospho-tyrosine immunoblot analysis revealed that ALN stimulates tyrosine phosphorylation of several proteins of whole cell lysates, among which the major targets of the BP could be immunochemically identified as Cx43. Additionally, the transmembrane receptor-like PTPs, RPTPµ and RPTPα, as well as the cytoplasmic PTP1B, are highly expressed in ROS 17/2.8 cells. Furthermore, we evidenced that Cx43 interacts with RPTPµ in ROS 17/2.8 and ALN decreases their association. These results support the hypothesis that BPs bind and inhibit PTPs associated to Cx43 or not, which would lead to the activation of signaling pathways in osteoblasts.  相似文献   

12.
Proteins of the low-density lipoprotein receptor (LDLR) family are remarkable in their ability to bind an extremely diverse range of protein and lipoprotein ligands, yet the basis for ligand recognition is poorly understood. Here, we report the 1.26 A X-ray structure of a complex between a two-module region of the ligand binding domain of the LDLR and the third domain of RAP, an escort protein for LDLR family members. The RAP domain forms a three-helix bundle with two docking sites, one for each LDLR module. The mode of recognition at each site is virtually identical: three conserved, calcium-coordinating acidic residues from each LDLR module encircle a lysine side chain protruding from the second helix of RAP. This metal-dependent mode of electrostatic recognition, together with avidity effects resulting from the use of multiple sites, represents a general binding strategy likely to apply in the binding of other basic ligands to LDLR family proteins.  相似文献   

13.
The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The generally inactive membrane-distal PTP domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s). We set out to characterize the interactions between RPTP-D1s and RPTP-D2s in vivo by co-immunoprecipitation of hemagglutinin-tagged fusion proteins encoding the transmembrane domain and RPTP-D1 and myc-tagged RPTP-D2. Seven RPTPs from four different subfamilies were used: RPTPalpha, RPTPepsilon, LAR, RPTPvarsigma, RPTPdelta, CD45, and RPTP(mu). We found that RPTP-D2s bound to RPTPs with different affinities. The presence of intrinsic RPTP-D2 altered the binding specificity toward other RPTP-D2s positively or negatively, depending on the identity of the RPTPs. Furthermore, the C terminus of RPTP-D2s and the "wedge" in RPTP-D1s played a central role in binding specificity. Finally, full-length RPTPalpha and LAR heterodimerized in an oxidative stress-dependent manner. Like RPTPalpha-D2, the LAR-D2 conformation was affected by oxidative stress, suggesting a common regulatory mechanism for RPTP complex formation. Taken together, interactions between RPTP-D1s and RPTP-D2s are a common but specific mechanism that is likely to be regulated. The RPTP-D2s and the wedge structures are crucial determinants of binding specificity, thus regulating cross-talk between RPTPs.  相似文献   

14.
Most receptor-type protein-tyrosine phosphatases (RPTPs) contain two tandem PTP domains. For some RPTPs the enzymatically inactive membrane-distal phosphatase domains (D2) were found to bind enzymatically active membrane proximal PTP (D1) domains, and oligomerization has been proposed as a general regulatory mechanism. The RPTP-like proteins IA-2 and IA-2beta, major autoantigens in insulin-dependent diabetes mellitus, contain just a single enzymatically inactive PTP-like domain. Their physiological role is as yet enigmatic. To investigate whether the catalytically inactive cytoplasmic domains of IA-2 and IA-2beta are involved in oligomerization, we exploited interaction trap assay in yeast and glutathione S-transferase pull-down and co-immunoprecipitation strategies on lysates of transfected COS-1 cells. The results show that IA-2 and IA-2beta are capable of homo- and heterodimerization to which both the juxtamembrane region and the phosphatase-like segment can contribute. Furthermore, they can form heterodimers with some other RPTP members, most notably RPTPalpha and RPTPepsilon, and down-regulate RPTPalpha enzymatic activity. Thus, in addition to homo-dimerization, the enzymatic activity of receptor-type PTPs can be regulated through heterodimerization with other RPTPs, including the catalytically inactive IA-2 and IA-2beta.  相似文献   

15.
Protein tyrosine phosphatases (PTPs), together with protein tyrosine kinases (PTKs), are involved in the regulation of cell activation, growth, and differentiation. To further elucidate the fine tuning of cell growth and differentiation through tyrosine phosphorylation, we tried to isolate mouse receptor-type PTP (RPTP) cDNA clones by screening mouse brain cDNA libraries with mouse CD45 PTP domain probes under reduced-stringency conditions. Characterization of isolated cDNA clones for RPTP showed that the cytoplasmic region contains two tandem repeats of PTP domain of about 230 amino acids with intrinsic phosphatase activity. The extracellular region was composed of immunoglobulin (Ig)-like domains and fibronectin type III (FN-III)-like domains. The gene was highly homologous to human PTP delta (HPTP delta) and thus was named MPTP delta (murine counterpart of HPTP delta). The MPTP delta gene appeared to generate at least three species of mRNA, which differ in the composition of the extracellular domain: type A, one Ig-like and four FN-III-like domains; type B, one Ig-like and eight FN-III-like domains; and type C, three Ig-like and eight FN-III-like domains. Interestingly, the 5' untranslated region and the leader peptide of types A and B were completely different from those of type C. Northern (RNA) blot analysis demonstrated that brain, kidney, and heart cells express three mRNA species of about 7 kb. Antibody directed against part of the extracellular domain of type A MPTP delta recognized a 210-kDa protein in brain and kidney lysates. In situ hybridization of brain samples revealed that MPTP delta mRNA is present in the hippocampus, thalamic reticular nucleus, and piriform cortex, where some Src family PTKs have been also demonstrated to exist. Although MPTP delta mRNA was not detected in lymphoid tissues, all of the pre-B-cell lines tested and one of three B-cell lines tested expressed MPTP delta mRNA, whereas antibody-producing B-cell hybridomas and T-cell and macrophage lines did not. Finally, the MPTP delta locus was tightly linked to the brown (b) locus on mouse chromosome 4.  相似文献   

16.
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.  相似文献   

17.
The epithelial-mesenchymal interactions required for kidney organogenesis are disrupted in mice lacking the integrin alpha8beta1. None of this integrin's known ligands, however, appears to account for this phenotype. To identify a more relevant ligand, a soluble integrin alpha8beta1 heterodimer fused to alkaline phosphatase (AP) has been used to probe blots and cDNA libraries. In newborn mouse kidney extracts, alpha8beta1-AP detects a novel ligand of 70-90 kD. This protein, named nephronectin, is an extracellular matrix protein with five EGF-like repeats, a mucin region containing a RGD sequence, and a COOH-terminal MAM domain. Integrin alpha8beta1 and several additional RGD-binding integrins bind nephronectin. Nephronectin mRNA is expressed in the ureteric bud epithelium, whereas alpha8beta1 is expressed in the metanephric mesenchyme. Nephronectin is localized in the extracellular matrix in the same distribution as the ligand detected by alpha8beta1-AP and forms a complex with alpha8beta1 in vivo. Thus, these results strongly suggest that nephronectin is a relevant ligand mediating alpha8beta1 function in the kidney. Nephronectin is expressed at numerous sites outside the kidney, so it may also have wider roles in development. The approaches used here should be generally useful for characterizing the interactions of novel extracellular matrix proteins identified through genomic sequencing projects.  相似文献   

18.
The binding of IL-2 and IL-3 to the factor-dependent cell lines CTB6 and 32D, respectively, was determined using biotinylated ligand detected by the addition of a streptavidin/alkaline phosphatase conjugate and amplified with a phosphatase amplification system. Binding of both ligands was detectable after incubation with as little as 20 fmol of ligand and could be inhibited with a 10-fold molar excess of nonbiotinylated ligand. No binding was observed when biotinylated ligand was incubated with a receptor negative cell line (PC-12) and IL-2 was unable to compete with biotinylated IL-3 binding to 32D cells, further demonstrating specificity. These studies indicate that biotinylated ligands can be used as a nonradioactive method to detect specific, high-affinity cell surface receptors.  相似文献   

19.
Protein tyrosine phosphatases: structure-function relationships   总被引:1,自引:0,他引:1  
Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.  相似文献   

20.
Retinal ganglion cell axons grow towards the optic fissure in close contact with the basal membrane, an excellent growth substratum. One of the ligands of receptor tyrosine phosphatase CRYPalpha is located on the retinal and tectal basal membranes. To analyze the role of this RPTP and its ligand in intraretinal growth and guidance of ganglion cell axons, we disrupted ligand- receptor interactions on the retinal basal membrane in culture. Antibodies against CRYPalpha strongly reduced retinal axon growth on the basal membrane, and induced a dramatic change in morphology of retinal growth cones, reducing the size of growth cone lamellipodia. A similar effect was observed by blocking the ligand with a CRYPalpha ectodomain fusion protein. These effects did not occur, or were much reduced, when axons were grown either on laminin-1, on matrigel or on basal membranes with glial endfeet removed. This indicates that a ligand for CRYPalpha is located on glial endfeet. These results show for the first time in vertebrates that the interaction of a receptor tyrosine phosphatase with its ligand is crucial not only for promotion of retinal axon growth but also for maintenance of retinal growth cone lamellipodia on basal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号