首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unfolded protein response (UPR) activates Ire1, an endoplasmic reticulum (ER) resident transmembrane kinase and ribonuclease (RNase), in response to ER stress. We used an in vivo assay, in which disappearance of the UPR-induced spliced HAC1 messenger ribonucleic acid (mRNA) correlates with the recovery of the ER protein-folding capacity, to investigate the attenuation of the UPR in yeast. We find that, once activated, spliced HAC1 mRNA is sustained in cells expressing Ire1 carrying phosphomimetic mutations within the kinase activation loop, suggesting that dephosphorylation of Ire1 is an important step in RNase deactivation. Additionally, spliced HAC1 mRNA is also sustained after UPR induction in cells expressing Ire1 with mutations in the conserved DFG kinase motif (D828A) or a conserved residue (F842) within the activation loop. The importance of proper Ire1 RNase attenuation is demonstrated by the inability of cells expressing Ire1-D828A to grow under ER stress. We propose that the activity of the Ire1 kinase domain plays a role in attenuating its RNase activity when ER function is recovered.  相似文献   

2.
3.
4.
The unfolded protein response (UPR) is a cellular recovery mechanism activated by endoplasmic reticulum (ER) stress. The UPR is coordinated with the ER-associated degradation (ERAD) to regulate the protein load at the ER. In the present study, we tested how membrane protein biogenesis is regulated through the UPR in epithelia, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a model. Pharmacological methods such as proteasome inhibition and treatment with brefeldin A and tunicamycin were used to induce ER stress and activate the UPR as monitored by increased levels of spliced XBP1 and BiP mRNA. The results indicate that activation of the UPR is followed by a significant decrease in genomic CFTR mRNA levels without significant changes in the mRNA levels of another membrane protein, the transferrin receptor. We also tested whether overexpression of a wild-type CFTR transgene in epithelia expressing endogenous wild-type CFTR activated the UPR. Although CFTR maturation is inefficient in this setting, the UPR was not activated. However, pharmacological induction of ER stress in these cells also led to decreased endogenous CFTR mRNA levels without affecting recombinant CFTR message levels. These results demonstrate that under ER stress conditions, endogenous CFTR biogenesis is regulated by the UPR through alterations in mRNA levels and posttranslationally by ERAD, whereas recombinant CFTR expression is regulated only by ERAD. endoplasmic reticulum-associated degradation; messenger ribonucleic acid  相似文献   

5.
6.
山松  毛泽斌  童坦君 《生命科学》2001,13(1):34-36,5
真核细胞中,当未折叠的蛋白在内质网上增多的时候,一系列内质网居民蛋白基因的转录也随之增加,这称为未折叠蛋白反应(unfolded protein response,UPR)。在酵母细胞中未折叠蛋白的感受器是Irelp蛋白,它能检测到未折叠蛋白的聚集,并将信号传递到细胞核内,诱导UPR特异转录因子Haclp mRNA的剪接成熟。成熟的Haclp蛋白能通过与UPR元件(UPR-element)的结合诱导含有这一元件的基因转录,从而启动UPR。在UPR信号传递途径中,磷酸化的Irelp与Gcn5/Ada复合物可通过解开染色体促进Haclp活性的发挥,而Ptc2p能通过使Irelp去磷酸化而反向调节UPR。目前发现UPR与磷脂生物合成存在交叉的共同途径,人类中也存在Irelp的类似物。  相似文献   

7.
8.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

9.
10.
The accumulation of unfolded proteins in the ER triggers a signaling response known as unfolded protein response (UPR). In yeast the UPR affects several hundred genes that encode ER chaperones and proteins operating at later stages of secretion. In mammalian cells the UPR appears to be more limited to chaperones of the ER and genes assumed to be important after cell recovery from ER stress that are not important for secretion. Here, we report that the mRNA of lectin ERGIC-53, a cargo receptor for the transport of glycoproteins from ER to ERGIC, and of its related protein VIP36 is induced by the known inducers of ER stress, tunicamycin and thapsigargin. In parallel, the rate of synthesis of the ERGIC-53 protein was induced by these agents. The response was due to the UPR since it was also triggered by castanospermine, a specific inducer of UPR, and inhibited by genistein. Thapsigargin-induced upregulation of ERGIC-53 could be fully accounted for by the ATF6 pathway of UPR. The results suggest that in mammalian cells the UPR also affects traffic from and beyond the ER.  相似文献   

11.
12.
13.
14.
NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene glycol treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activation of the UPR by ER stress inducers, but did not affect activation of NRPs. We also found that this integrated pathway transduces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senescence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmentation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde production, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytokinin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.  相似文献   

15.
Epithelial-to-mesenchymal transition (EMT) contributes to renal fibrosis in chronic kidney disease. Endoplasmic reticulum (ER) stress, a feature of many forms of kidney disease, results from the accumulation of misfolded proteins in the ER and leads to the unfolded protein response (UPR). We hypothesized that ER stress mediates EMT in human renal proximal tubules. ER stress is induced by a variety of stressors differing in their mechanism of action, including tunicamycin, thapsigargin, and the calcineurin inhibitor cyclosporine A. These ER stressors increased the UPR markers GRP78, GRP94, and phospho-eIF2α in human proximal tubular cells. Thapsigargin and cyclosporine A also increased cytosolic Ca(2+) concentration and T cell death-associated gene 51 (TDAG51) expression, whereas tunicamycin did not. Thapsigargin was also shown to increase levels of active transforming growth factor (TGF)-β1 in the media of cultured human proximal tubular cells. Thapsigargin induced cytoskeletal rearrangement, β-catenin nuclear translocation, and α-smooth muscle actin and vinculin expression in proximal tubular cells, indicating an EMT response. Subconfluent primary human proximal tubular cells were induced to undergo EMT by TGF-β1 treatment. In contrast, tunicamycin treatment did not produce an EMT response. Plasmid-mediated overexpression of TDAG51 resulted in cell shape change and β-catenin nuclear translocation. These results allowed us to develop a two-hit model of ER stress-induced EMT, where Ca(2+) dysregulation-mediated TDAG51 upregulation primes the cell for mesenchymal transformation via Wnt signaling and then TGF-β1 activation leads to a complete EMT response. Thus the release of Ca(2+) from ER stores mediates EMT in human proximal tubular epithelium via the induction of TDAG51.  相似文献   

16.
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78 kDa), phospho-eIF2α (phosphorylated eukaryotic initiation factor 2α) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2α, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.  相似文献   

17.
18.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER overload, resulting in ER stress. To cope with ER stress, mammalian cells trigger a specific response known as the unfolded protein response (UPR). Although recent studies have indicated cross-talk between ER stress and oxidative stress, the mechanistic link is not fully understood. By using murine fibrosarcoma L929 cells, in which tumor necrosis factor (TNF) alpha induces accumulation of reactive oxygen species (ROS) and cell death, we show that TNFalpha induces the UPR in a ROS-dependent fashion. In contrast to TNFalpha, oxidative stresses by H2O2 or arsenite only induce eukaroytic initiation factor 2alpha phosphorylation, but not activation of PERK- or IRE1-dependent pathways, indicating the specificity of downstream signaling induced by various oxidative stresses. Conversely, the UPR induced by tunicamycin substantially suppresses TNFalpha-induced ROS accumulation and cell death by inhibiting reduction of cellular glutathione levels. Collectively, some, but not all, oxidative stresses induce the UPR, and pre-emptive UPR counteracts TNFalpha-induced ROS accumulation.  相似文献   

19.
过量表达内质网小分子热激蛋白增强番茄的衣霉素抗性   总被引:4,自引:0,他引:4  
真核细胞内质网腔内未折叠蛋白的过度积累会引起内质网胁迫(ER胁迫),继而激活未折叠蛋白应答(UPR)信号途径,诱导内质网定位的分子伴侣的大量表达(如BiP和calnexin等)。本工作将CaMV35S启动子驱动的内质网小分子热激蛋白基因(ER-sHSP)导入番茄,发现ER-sHSP的过量表达提高了转基因番茄整株对衣霉素的抗性。衣霉素处理使未转基因番茄中BiP和calnexin基因的表达迅速升高,转基因番茄中这两个基因的表达也有增加,但表达强度明显低于未转基因番茄。说明ER-sHSP能够减轻ER胁迫,并可能参与UPR信号转导途径。  相似文献   

20.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号