首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protease nexin-1 is a protein proteinase inhibitor that is secreted by a variety of cultured cells and rapidly forms complexes with thrombin, urokinase, and plasmin; the complexes then bind back to the cells and are internalized and degraded. In fibroblast cultures, protease nexin-1 is localized to the extracellular matrix. Here we report that protease nexin-1, which is bound to the surface of fibroblasts, forms complexes with thrombin, but not urokinase or plasmin. Experiments were conducted to determine directly if protease nexin-1 binding to the fibroblast surface alters its proteinase specificity. To do this, cell surface protease nexin-1 was inhibited using anti-protease nexin-1 monoclonal antibodies that stoichiometrically block its ability to form complexes with target proteinases. Then, purified protease nexin-1 was added to these cells; the cell-bound molecule formed complexes with thrombin, but not urokinase or plasmin. Similar experiments showed that protease nexin-1 bound to preparations of fibroblast extracellular matrix also formed complexes with thrombin, but not urokinase or plasmin. Components of the extracellular matrix other than heparin-like glycosaminoglycans are required for this regulation since heparin did not block the formation of complexes between protease nexin-1 and urokinase or plasmin. These results suggest that protease nexin-1 is primarily a thrombin inhibitor in interstitial fluids where much of it would be bound to cell surfaces.  相似文献   

2.
Fibroblasts as well as several other cell types, secrete a number of protease inhibitors into their culture media. Among these inhibitors are the protease nexins, a class of proteins which covalently bind serine proteases, thereby inactivating their specific targets. Protease nexin-I, first discovered in human foreskin fibroblasts, binds thrombin, plasmin, and urokinase with high affinity, forming covalently linked complexes. Human fibroblasts bind complexes of protease nexin-I and its target protease via a cell-surface, high-affinity receptor. We have analyzed a number of characteristics of this receptor, and found them to be typical of class II receptors in general. At 4 degrees C binding of PN-I:protease complexes was competed by heparin. In addition, binding was independent of the particular protease bound to the PN-I; purified complexes of PN-I with thrombin or urokinase competed equipotently for [125]I-thrombin:PN-I binding. As the pH of the binding buffer was lowered, binding to cells increased. A twofold increase in binding was attained by lowering the pH from 7.5 to 4.5. This phenomenon was not due to irreversible, pH-induced changes to either the cell surface or the labeled complexes. At 37 degrees C, the removal of labeled complexes from culture medium was rapid; approximately 80% was removed by 4 hours under given conditions. The internalization of complexes was also very rapid, with an estimated ke (endocytic rate constant) of 1.0 min-1. At neutral pH, fibroblasts bind complexes in a saturable manner. Scatchard analysis yields a receptor number of 250,000 per cell and a Kd of 1 nM.  相似文献   

3.
Protease nexin. Properties and a modified purification procedure   总被引:21,自引:0,他引:21  
The present paper describes chemical and functional properties of protease nexin, a serine protease inhibitor released from cultured human fibroblasts. It is shown that protease nexin is actually synthesized by fibroblasts and represents about 1% of their secreted protein. Analysis of the amino acid composition of purified protease nexin indicates that it is evolutionarily related to antithrombin III and heparin cofactor II. Protease nexin contains approximately 6% carbohydrate, with 2.3% amino sugar, 1.1% neutral sugar, and 3.0% sialic acid. The Mr calculated from equilibrium sedimentation analysis is 43,000. Protease nexin is a broad specificity inhibitor of trypsin-like serine proteases. It reacts rapidly with trypsin (kassoc = 4.2 +/- 0.4 X 10(6) M-1 s-1), thrombin (kassoc = 6.0 +/- 1.3 X 10(5) M-1 s-1), urokinase (kassoc = 1.5 +/- 0.1 X 10(5) M-1 s-1), and plasmin (kassoc = 1.3 +/- 0.1 X 10(5) M-1 s-1), and slowly inhibits Factor Xa and the gamma subunit of nerve growth factor but does not inhibit chymotrypsin-like proteases or leukocyte elastase. In the presence of heparin, protease nexin inhibits thrombin at a nearly diffusion-controlled rate. Two heparin affinity classes of protease nexin can be detected. The present characterization pertains to the fraction of protease nexin having the higher affinity for heparin. The low affinity material, which is the minor fraction, is lost during purification.  相似文献   

4.
We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e–m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a–d, 3a–d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.  相似文献   

5.
This report identifies a component of normal human fibroblasts that forms a covalent linkage with thrombin and urokinase (urinary plasminogen activator) and mediates most of the specific cellular binding of these proteases. This component, here named protease-nexin (PN), is both associated with the cell surface and released into the culture medium. In several ways PN resembles antithrombin III (AT3), a prominent inhibitor of thrombin in serum: PN links thrombin, probably via an ester bond; PN does not link thrombin blocked at its catalytic site serine; PN has a high-affinity heparin-binding site; and heparin greatly accelerates the rate of linkage between soluble PN and thrombin. Despite these similarities, PN and AT3 are distinct; they differ in size and are not immunologically cross-reactive. Whereas AT3 regulates the proteolytic activity of thrombin in serum, PN may regulate the activity of serine proteases at and near the cell surface.  相似文献   

6.
The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed.  相似文献   

7.
The proteolytic actions of elastases have been implicated in extracellular matrix damage, which is characteristic of a variety of pathological conditions including emphysema and rheumatoid arthritis. In order to elucidate the molecular events involved in elastase interaction with connective tissue cells, the present study was designed to investigate the association of elastase with human fibroblasts at 4 degrees C. Elastase bound saturably to binding sites that were present on the surface of these cells. Analysis of cell-bound elastase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a high molecular weight complex (Mr 54,000) that was not formed with elastase whose catalytic site serine was derivatized with a diisopropylphosphate group. The complex did not represent elastase bound to either protease nexin or contaminating serum. The cellular component with which elastase formed a complex could not be detected in the cell culture medium. Unexpectedly, elastase that had been pre-bound at 4 degrees C was not internalized after cells were warmed to 37 degrees C. The elastase binding site described in this report is therefore distinct from high affinity binding sites involved in receptor-mediated endocytosis and intracellular degradation.  相似文献   

8.
Hook VY  Hwang SR 《Biological chemistry》2002,383(7-8):1067-1074
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.  相似文献   

9.
In the course of studies on the regulation of plasminogen activator-mediated extracellular matrix degradation in muscle we found the presence of a factor, a cellular inhibitor of serine proteases having features similar to the serpin protease nexin I (PNI). This factor was present in the medium and at maximum concentration following fusion of skeletal muscle cells in culture. The ability of the PNI homologue in mouse muscle to inhibit ECM degradation by urokinase in myoblast medium was compared to that of human PNI purified from human fibroblasts. Stable (to SDS) 1:1 molar ratio complex formation between PNI and proteases, the proposed means by which these enzymes are regulated and removed, was also detected. Cell surface receptors for protease:PNI complexes, the specific binding sites for inactive complex internalization, were found on multinucleated myotubes, while little or no receptor activity was detected on myoblasts. These data suggest that developmental regulation of a) increased PNI proteolytic inhibitory activity expression and b) the appearance of protease:inhibitor complex receptors on muscle cell surfaces during myogenesis may constitute important regulatory features of muscle surface proteolytic activity. They complement previous studies of proteoglycan metabolism in muscle, which itself contains molecules capable of regulating the activity of myotube surface proteases.  相似文献   

10.
Isocoumarins are potent mechanism-based heterocyclic irreversible inhibitors for a variety of serine proteases. Most serine proteases are inhibited by the general serine protease inhibitor 3,4-dichloroisocoumarin, whereas isocoumarins containing hydrophobic 7-acylamino groups are potent inhibitors for human leukocyte elastase and those containing 7-alkylureidogroups are inhibitors for procine pancreatic elastase. Isocoumarins containing basic side chains that resemble arginine are potent inhibitors for trypsin-like enzymes. A number of 3-alkoxy-4-chloro-7-guanidinoisocoumarins are potent inhibitors of bovine thrombin, human factor Xa, human factor XIa, human factor XIIa, human plasma kallikrein, porcine pancreatic kallikrein, and bovine trypsin. Another cathionic derivative, 4-chloro-3-(2-isothiureidoethoxy) isocoumarin, is less reactive toward many of these enzymes but is an extremely potent inhibitor of human plasma kallikrein. Several guanidinoisocoumarins have been tested as anticoagulants in human plasma and are effective at prolonging the prothrombin time. The mechanism of inhibition by this class of heterocyclic inactivators involves formation of an acyl enzyme by reaction of the active site serine with the isocoumarin carbonyl group. Isocoumarins with 7-amino or 7-guanidino groups will then decompose further to quinone imine methide intermediates, which react further with an active site residue (probably His-57) to form stable inhibited enzyme derivatives. Isocoumarins should be useful in further investigations of the physiological function of serine proteases and may have future therapeutic utility for the treatment of emphysema and coagulation disorders.  相似文献   

11.
We have used purified protease nexin-I (PN-I) from human fibroblasts to develop a polyclonal antibody that specifically blocks the PN-I-mediated cellular binding of thrombin and urokinase. Anti-PN-I IgG did not inhibit the binding of 125I-epidermal growth factor-binding protein to fibroblasts, which is mediated by protease nexin-II, another cell-secreted, serine protease inhibitor that is distinct from PN-I. This furthers the belief that the protease nexins are distinct from one another. In addition, while anti-PN-I IgG immunoprecipitated PN-I X thrombin complexes, it did not do so with antithrombin-III X thrombin. Metabolically labeled PN-I was also immunoprecipitated by IgG, indicating that the protein can be labeled in vivo. The antibody also recognized primarily one band on Western transfers of conditioned medium from fibroblast cultures. These results suggest that anti-PN-I will be useful in probing the physiological role of PN-I as well as its biosynthesis.  相似文献   

12.
Protease nexin 1 (PN-1) is a protease inhibitor secreted by cultured fibroblasts that forms complexes with certain serine proteases; the complexes bind back to the cells and are internalized and degraded. In the present studies, a panel of PN-1 monoclonal antibodies (mAbs) was isolated; none showed detectable cross-reactivity with four related plasma protease inhibitors. Four purified mAbs (mAbp1, mAbp6, mAbp9, and mAbp18) were tested for their ability to block the formation of complexes between PN-1 and target proteases. mAbp1, as well as a rabbit polyclonal anti-PN-1 IgG preparation, did not block formation of 125I-thrombin-PN-1 complexes. mAbp6, mAbp9, and mAbp18 blocked the formation of 125I-thrombin-PN-1 and 125I-urokinase-PN-1 complexes at stoichiometric concentrations of mAb and PN-1. Studies on their ability to block formation of 125I-trypsin-PN-1 complexes showed that mAbp18 also blocked this reaction at stoichiometric concentrations with PN-1 whereas mAbp6 and mAbp9 blocked less effectively. Thus, mAbp18 appears to bind at or close to the reactive center of PN-1. The blocking mAbs should be useful in studies to probe physiological functions of PN-1.  相似文献   

13.
Previous studies have shown that glycosaminoglycans in the extracellular matrix accelerate the inactivation of target proteases by certain protease inhibitors. It has been suggested that the ability of the matrix of certain cells to accelerate some inhibitors but not others might reflect the site of action of the inhibitors. Previous studies showed that fibroblasts accelerate the inactivation of thrombin by protease nexin-1, an inhibitor that appears to function at the surface of cells in extravascular tissues. The present experiments showed that endothelial cells also accelerate this reaction. The accelerative activity was accounted for by the extracellular matrix and was mostly due to heparan sulfate. Fibroblasts but not endothelial cells accelerated the inactivation of thrombin by heparin cofactor II, an abundant inhibitor in plasma. This is consistent with previous suggestions that heparin cofactor II inactivates thrombin when plasma is exposed to fibroblasts and smooth muscle cells. Neither fibroblasts nor endothelial cells accelerated the inactivation of C1s by plasma C1-inhibitor.  相似文献   

14.
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition.  相似文献   

15.
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.  相似文献   

16.
Complexes between tissue-type plasminogen activator (t-PA) and its rapidly acting inhibitor plasminogen activator inhibitor type 1 (PAI-1) are bound, internalized, and degraded by HepG2 cells. The mechanism involves endocytosis mediated by a specific high-affinity receptor. However, the particular domains of the complex that are recognized by the receptor have not been elucidated. To identify the determinants involved in ligand binding to the receptor, several variants of t-PA were assessed for their ability to form complexes with PAI-1 and thereby to inhibit specific cellular binding of complexes between structurally unmodified 125I-t-PA and PAI-1. Catalytically active variants lacking selected structural domains form complexes with PAI-1 and inhibit 125I-t-PA.PAI-1 binding to HepG2 cells. In addition, several forms of the plasminogen activator urokinase (u-PA), which shares partial structural homology with t-PA, were evaluated as competitors of cellular binding. The catalytically active two-chain forms of u-PA, but not the inactive proenzyme single-chain form, complex with PAI-1 and inhibit specific binding of 125I-t-PA.PAI-1, suggesting that the serine protease domain, rather than other domains, may confer the determinants required for cellular binding. However, a mutant t-PA with markedly reduced catalytic activity, resulting from replacement of the active site serine with threonine, not only forms complexes with PAI-1 but also inhibits specific cellular binding of unmodified 125I-t-PA.PAI-1. These data indicate that specific binding of t-PA.PAI-1 to HepG2 cells does not require a serine-containing catalytic site in the protease domain. To determine whether binding of the complex is mediated through other components of t-PA or through structural elements of PAI-1, both t-PA and PAI-1 were examined separately for capacity to bind directly to HepG2 cells. To exclude potential interactions with components of the extracellular matrix which contains binding sites for PAI-1, ligand binding to HepG2 cells in suspension was assessed. Although neither t-PA nor PAI-1 alone binds specifically to HepG2 cells, the preformed t-PA.PAI-1 complexes do. These findings suggest that specific binding of t-PA.PAI-1 requires elements of the PAI-1 moiety and/or parts of the protease domain of t-PA.  相似文献   

17.
Serine proteases are involved in many processes in the nervous system and specific inhibitors tightly control their proteolytic activity. Thrombin is thought to play a role in tissue development and homeostasis. To date, protease nexin-1 is the only known endogenous protease inhibitor that specifically interferes with thrombotic activity and is expressed in the brain. In this study, we report the detection of a novel thrombin inhibitory activity in the brain of protease nexin-1(-/-) mice. Purification and subsequent analysis by tandem mass spectrometry identified this protein as the phosphatidylethanolamine-binding protein (PEBP). We demonstrate that PEBP exerts inhibitory activity against several serine proteases including thrombin, neuropsin, and chymotrypsin, whereas trypsin, tissue type plasminogen activator, and elastase are not affected. Since PEBP does not share significant homology with other serine protease inhibitors, our results define it as the prototype of a novel class of serine protease inhibitors. PEBP immunoreactivity is found on the surface of Rat-1 fibroblast cells and although its sequence contains no secretion signal, PEBP-H(6) can be purified from the conditioned medium upon recombinant expression.  相似文献   

18.
The crystallographic structures of the ternary complexes of human alpha-thrombin with hirugen (a sulfated hirudin fragment) and the small-molecule active site thrombin inhibitors BMS-186282 and BMS-189090 have been determined at 2.6 and 2.8 A. In both cases, the inhibitors, which adopt very similar bound conformations, bind in an antiparallel beta-strand arrangement relative to the thrombin main chain in a manner like that reported for PPACK, D-Phe-Pro-Arg-CH2Cl. They do, however, exhibit differences in the binding of the alkyl guanidine moiety in the specificity pocket. Numerous hydrophilic and hydrophobic interactions serve to stabilize the inhibitors in the binding pocket. Although PPACK forms covalent bonds to both serine and the histidine of the catalytic triad of thrombin, neither BMS-186282 nor BMS-189090 bind covalently and only BMS-186282 forms a hydrogen bond to the serine of the catalytic triad. Both inhibitors bind with high affinity (Ki = 79 nM and 3.6 nM, respectively) and are highly selective for thrombin over trypsin and other serine proteases.  相似文献   

19.
A fibroblast-derived urokinase-inhibitor differing from protease nexin   总被引:1,自引:0,他引:1  
UK-I, a 60-kDa urokinase-inhibitor derived from human fibroblasts, inhibited 54-kDa urokinase (EC 3.4.21.31) activity dose-dependently on ordinary fibrin-agar autograms. This UK-I formed an SDS-stable approximately 75-kDa complex with radioiodinated urokinase (33 kDa) on an autoradiogram following SDS/polyacrylamide gel electrophoresis. Benzamidine hydrochloride inhibited its formation, indicating UK-I to bind at the active site of urokinase and form an inactive complex. UK-I did not form a complex with [125I]thrombin (EC 3.4.21.5). It is thus evident that UK-I is one type of urokinase-inhibitor derived from human fibroblasts with properties differing from protease nexin, another urokinase-inhibitor derived from the same source.  相似文献   

20.
Role of heparin and heparinlike molecules in thrombosis and atherosclerosis   总被引:5,自引:0,他引:5  
Antithrombin is a protease inhibitor that neutralizes the activity of the serine proteases of the coagulation cascade, such as factors IXa, Xa, XIa, XIIa, and thrombin by forming a 1:1 stoichiometric complex between enzyme and inhibitor via a reactive site (arginine)-active center (serine interaction). Heparin binds to lysyl residues on antithrombin and accelerates the rate of complex formation. Studies of the binding parameters and kinetic characteristics of the heparin-antithrombin-hemostatic enzyme interactions have revealed that binding of heparin to antithrombin is responsible for a approximately 1000-fold acceleration of the thrombin-antithrombin or factor IXa-antithrombin and factor Xa-antithrombin interactions (allosteric effect). The reactions between free thrombin or free factor IXa and heparin provide an additional 4- to 15-fold enhancement in the rate of these processes (approximation effect) and account for 1-2% of the total rate of enhancement. It has been shown that commercial heparin is composed of anticoagulantly active and anticoagulantly inactive species. The anticoagulantly active mucopolysaccharide contains a unique antithrombin-binding site. Anticoagulantly inactive heparin does not possess this structure and does not bind to the protease inhibitor. Anticoagulantly active heparin also contains a critical region required for the acceleration of the various enzyme-inhibitor interactions. The two different domains of the heparin molecule interact with separate areas of antithrombin and induce distinct conformational transitions within the protease inhibitor. Anticoagulantly active heparinlike molecules (most likely a heparan sulfate with an appropriate sequence for anticoagulant activity) are found on the luminal surface of the endothelium. This heparinlike substance appears to alter the conformation of antithrombin in a manner virtually identical to that of commercial heparin. Both anticoagulantly active heparin and inactive heparin are able to suppress smooth muscle cell proliferation in vitro and in vivo and can reverse the effects of mitogenic factors such as platelet-derived growth factor. Furthermore, it has been shown that bovine aortic endothelial cells produce heparinlike molecules with growth inhibitory potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号