共查询到20条相似文献,搜索用时 0 毫秒
1.
Jeffrey W Smith Herve Le Calvez Lilian Parra-Gessert Nicholas E Preece Xin Jia Nuria Assa-Munt 《The Journal of biological chemistry》2002,277(12):10298-10305
Integrins contain a number of divalent cation binding sites that control ligand binding affinity. Ions such as Ca(2+) and Mg(2+) bind to distinct sites on integrin and can have opposing effects on ligand binding. These effects are presumably brought about by alterations of the shape of the ligand binding pocket. To gain insight into the nature of these structural differences, we probed the integrin ligand binding site with an RGD-based library of unparalleled complexity. A cysteine-constrained phage library containing six random amino acids and the RGD motif present in seven different registers was used to select for ligands that exhibit ion-selective binding to integrin alpha(IIb)beta(3). The library was used to select for peptides that bind to the integrin alpha(IIb)beta(3) preferentially in Ca(2+) versus Mg(2+). Peptides were identified which bound selectively in each ion. The Ca(2+)-selective peptides had a range of sequences, with the only obvious consensus involving a motif that had four cysteine residues bonded in a 1,4:2,3 arrangement. Interestingly though, the Mg(2+)-selective peptides exhibited a well defined consensus motif containing Cys-X-aromatic-L/G-R-G-D-hydrophobic-R-R/K-Cys. As a first step toward understanding the structural basis for this selectivity, solution NMR structures were obtained for representatives of both sets of peptides. All peptides formed turns, with the RGD motif at the apex. The Mg(2+)-selected peptides contained a unique basic patch that protrudes from the base of the turn. 相似文献
2.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa) 总被引:29,自引:0,他引:29
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function. 相似文献
3.
Multi-step fibrinogen binding to the integrin (alpha)IIb(beta)3 detected using force spectroscopy 总被引:1,自引:0,他引:1 下载免费PDF全文
The regulated ability of integrin alphaIIbbeta3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific alphaIIbbeta3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified alphaIIbbeta3 and fibrinogen, covalently attached to underlying surfaces, ranged from approximately 20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20-60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80-90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to alphaIIbbeta3 antagonists or Mn2+, an alphaIIbbeta3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of alphaIIbbeta3-fibrinogen interactions was independent of the loading rate (160-16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of alphaIIbbeta3 and fibrinogen revealed at the single-molecule level. 相似文献
4.
Gushiken FC Patel V Liu Y Pradhan S Bergeron AL Peng Y Vijayan KV 《The Journal of biological chemistry》2008,283(19):12862-12869
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway. 相似文献
5.
Impaired platelet aggregation and sustained bleeding in mice lacking the fibrinogen motif bound by integrin alpha IIb beta 3. 总被引:9,自引:1,他引:9 下载免费PDF全文
Blood loss at sites of vascular rupture is controlled by the adhesion and aggregation of platelets and the formation of an insoluble fibrin matrix. Fibrinogen is considered to be critical in these processes by both providing an abundant dimeric ligand for alpha IIb beta 3-mediated platelet aggregation, and serving as the fundamental building block of the fibrin polymer. To establish an in vivo model system to examine in detail the importance of alpha IIb beta 3-fibrinogen interactions in platelet function, hemostasis, response to injury and vasoocclusive disease, and to test the prevailing hypothesis that the C-terminal segment of the fibrinogen gamma chain is essential for alpha IIb beta 3 binding, we have used gene-targeting technology in mice to eliminate the last five residues (QAGDV) from the gamma chain. Mice homozygous for the modified gamma chain gene (gamma delta 5/gamma delta 5) displayed a generally normal hematological profile, including normal platelet count, plasma fibrinogen level, clotting time and fibrin crosslinking. However, both gamma delta 5-fibrinogen binding to alpha IIb beta 3 and platelet aggregation were highly defective. Remarkably, another alpha IIb beta 3-dependent process, clot retraction, was unaffected by the gamma delta 5 mutation. Despite the preservation of clotting function, gamma delta 5/gamma delta 5 mice were unable to control blood loss following a surgical challenge and occasionally developed fatal neonatal bleeding events. 相似文献
6.
Gottschalk KE Adams PD Brunger AT Kessler H 《Protein science : a publication of the Protein Society》2002,11(7):1800-1812
Integrins are composed of noncovalently bound dimers of an alpha- and a beta-subunit. They play an important role in cell-matrix adhesion and signal transduction through the cell membrane. Signal transduction can be initiated by the binding of intracellular proteins to the integrin. Binding leads to a major conformational change. The change is passed on to the extracellular domain through the membrane. The affinity of the extracellular domain to certain ligands increases; thus at least two states exist, a low-affinity and a high-affinity state. The conformations and conformational changes of the transmembrane (TM) domain are the focus of our interest. We show by a global search of helix-helix interactions that the TM section of the family of integrins are capable of adopting a structure similar to the structure of the homodimeric TM protein Glycophorin A. For the alpha(IIb)beta(3) integrin, this structural motif represents the high-affinity state. A second conformation of the TM domain of alpha(IIb)beta(3) is identified as the low-affinity state by known mutational and nuclear magnetic resonance (NMR) studies. A transition between these two states was determined by molecular dynamics (MD) calculations. On the basis of these calculations, we propose a three-state mechanism. 相似文献
7.
Basani RB D'Andrea G Mitra N Vilaire G Richberg M Kowalska MA Bennett JS Poncz M 《The Journal of biological chemistry》2001,276(17):13975-13981
To determine the molecular basis for the insensitivity of rat alpha(IIb)beta(3) to inhibition by RGD-containing peptides, hybrids of human and rat alpha(IIb)beta(3) and chimeras of alpha(IIb)beta(3) in which alpha(IIb) was composed of portions of human and rat alpha(IIb) were expressed in Chinese hamster ovary cells and B lymphocytes, and the ability of the tetrapeptide RGDS to inhibit fibrinogen binding to the various forms of alpha(IIb)beta(3) was measured. These measurements indicated that sequences regulating the sensitivity of alpha(IIb)beta(3) to RGDS are located in the seven amino-terminal repeats of alpha(IIb). Moreover, replacing the first three or four (but not the first two) repeats of rat alpha(IIb) with the corresponding human sequences enhanced sensitivity to RGDS, whereas replacing the first two or three repeats of human alpha(IIb) with the corresponding rat sequences had little or no effect. Nevertheless, RGDS bound to Chinese hamster ovary cells expressing alpha(IIb)beta(3) regardless whether the alpha(IIb) in the heterodimers was human, rat, or a rat-human chimera. These results indicate that the sequences determining the sensitivity of alpha(IIb)beta(3) to RGD-containing peptides are located in the third and fourth amino-terminal repeats of alpha(IIb). Because RGDS binds to both human and rat alpha(IIb)beta(3), the results suggest that differences in RGDS sensitivity result from differences in the allosteric changes induced in these repeats following RGDS binding. 相似文献
8.
Nikolaos Biris Morfis Abatzis John V Mitsios Maria Sakarellos-Daitsiotis Constantinos Sakarellos Demokritos Tsoukatos Alexandros D Tselepis Lambros Michalis Dimitrios Sideris Georgia Konidou Ketty Soteriadou Vassilios Tsikaris 《European journal of biochemistry》2003,270(18):3760-3767
alpha(IIb)beta(3), a member of the integrin family of adhesive protein receptors, is the most abundant glycoprotein on platelet plasma-membranes and binds to adhesive proteins via the recognition of short amino acid sequences, for example the ubiquitous RGD motif. However, elucidation of the ligand-binding domains of the receptor remains controversial, mainly owing to the fact that integrins are conformationally labile during purification and storage. In this study, a detailed mapping of the extracellular region of the alpha(IIb) subunit is presented, using overlapping 20-peptides, in order to identify the binding sites of alpha(IIb) potentially involved in the platelet-aggregation event. Regions alpha(IIb) 313-332, alpha(IIb) 265-284 and alpha(IIb) 57-64 of alpha(IIb)beta(3) were identified as putative fibrinogen-binding domains because the corresponding peptides inhibited platelet aggregation and antagonized fibrinogen association, possibly by interacting with this ligand. The latter is further supported by the finding that the above peptides did not interfere with the binding of PAC-1 to the activated form of alpha(IIb)beta(3). Furthermore, alpha(IIb) 313-332 was found to bind to fibrinogen in a solid-phase binding assay. It should be emphasized that all the experiments in this study were carried out on activated platelets and consequently on the activated form of this integrin receptor. We hypothesize that RAD and RAE adhesive motifs, encompassed in alpha(IIb) 313-332, 265-284 and 57-64, are capable of recognizing complementary domains of fibrinogen, thus inhibiting the binding of this ligand to platelets. 相似文献
9.
Fibrinogen binding to purified platelet glycoprotein IIb-IIIa (integrin alpha IIb beta 3) is modulated by lipids. 总被引:3,自引:0,他引:3
Soluble fibrinogen binding to the glycoprotein IIb-IIIa complex (integrin alpha IIb beta 3) requires platelet activation. The intracellular mediator(s) that convert glycoprotein IIb-IIIa into an active fibrinogen receptor have not been identified. Because the lipid composition of the platelet plasma membrane undergoes changes during activation, we investigated the effects of lipids on the fibrinogen binding properties of purified glycoprotein IIb-IIIa. Anion exchange chromatography of lipids extracted from platelets exposed to thrombin or other platelet agonists resolved an activity that increased fibrinogen binding to glycoprotein IIb-IIIa. A monoester phosphate was important for activity, and phosphatidic acid coeluted with the peak of activity. Purified phosphatidic acid dose-dependently promoted a specific interaction between glycoprotein IIb-IIIa and fibrinogen which possessed many but not all of the properties of fibrinogen binding to activated platelets. Phosphatidic acid appeared to increase the proportion of fibrinogen binding-competent glycoprotein IIb-IIIa complexes without altering their affinity for fibrinogen. The effects of phosphatidic acid were a result of specific structural properties of the lipid and were not mimicked by other phospholipids. Lysophosphatidic acid, however, was a potent inducer of fibrinogen binding to glycoprotein IIb-IIIa. These results demonstrate that specific lipids can affect fibrinogen binding to purified glycoprotein IIb-IIIa and suggest that the lipid environment has the potential to influence fibrinogen binding to its receptor. 相似文献
10.
Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. 总被引:17,自引:3,他引:17 下载免费PDF全文
T E O''Toole J C Loftus X P Du A A Glass Z M Ruggeri S J Shattil E F Plow M H Ginsberg 《Molecular biology of the cell》1990,1(12):883-893
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment. 相似文献
11.
Regulation of the pp72syk protein tyrosine kinase by platelet integrin alpha IIb beta 3. 总被引:11,自引:0,他引:11 下载免费PDF全文
pp72syk is essential for development and function of several hematopoietic cells, and it becomes activated through tandem SH2 interaction with ITAM motifs in immune response receptors. Since Syk is also activated through integrins, which do not contain ITAMs, a CHO cell model system was used to study Syk activation by the platelet integrin, alpha IIb beta 3. As in platelets, Syk underwent tyrosine phosphorylation and activation during CHO cell adhesion to alpha IIb beta 3 ligands, including fibrinogen. This involved Syk autophosphorylation and the tyrosine kinase activity of Src, and it exhibited two novel features. Firstly, unlike alpha IIb beta 3-mediated activation of pp125FAK, Syk activation could be triggered by the binding of soluble fibrinogen and abolished by truncation of the alpha IIb or beta 3 cytoplasmic tail, and it was resistant to inhibition by cytochalasin D. Secondly, it did not require phosphorylated ITAMs since it was unaffected by disruption of an ITAM-interaction motif in the SH2(C) domain of Syk or by simultaneous overexpression of the tandem SH2 domains. These studies demonstrate that Syk is a proximal component in alpha IIb beta 3 signaling and is regulated as a consequence of intimate functional relationships with the alpha IIb beta 3 cytoplasmic tails and with Src or a closely related kinase. Furthermore, there are fundamental differences in the activation of Syk by alpha IIb beta 3 and immune response receptors, suggesting a unique role for integrins in Syk function. 相似文献
12.
13.
We have found that the form of glycoprotein (GP) IIb-IIIa (integrin alpha IIb beta 3) expressed on nonstimulated platelets is a functional receptor that mediates selective and irreversible adhesion to immobilized fibrinogen. This occurs even in the presence of the elevated intracellular cAMP levels induced by prostaglandin E1 or after inhibition of protein kinase C activity by sphingosine. In the absence of inhibitors, platelets adhering to fibrinogen through GP IIb-IIIa become fully activated and aggregate with one another. Immobilized von Willebrand factor (vWF), in contrast, is recognized by nonstimulated platelets through another receptor, GP Ib. This interaction leads to a change in the ligand recognition specificity of GP IIb-IIIa that can then bind to immobilized vWF and mediate irreversible platelet adhesion and aggregation; this process, however, is inhibited by elevated intracellular cAMP levels or blockade of protein kinase C activity. Therefore, GP Ib and GP IIb-IIIa induce platelet activation through the selective recognition of immobilized vWF and fibrinogen, respectively, in the absence of exogenous agonists. Moreover, "nonactivated" and "activated" GP IIb-IIIa exhibits distinctly different reactivity toward surface-bound vWF, and the functional switch can be induced by the binding of vWF to GP Ib. These findings demonstrate the modulation of platelet function by two different adhesion receptors, GP Ib and GP IIb-IIIa, as well as the distinct dual role of the latter as the necessary common mediator of irreversible adhesion and aggregation on both fibrinogen and vWF. 相似文献
14.
Adhesive interactions of platelet integrin alpha(IIb)beta3 with fibrinogen and fibrin are central events in hemostasis and thrombosis. However, the mechanisms by which alpha(IIb)beta3 binds these ligands remain incompletely understood. We have recently demonstrated that alpha(IIb)beta3 binds the gamma365-383 sequence in the gammaC-domain of fibrin(ogen). This sequence contains neither the AGDV nor the RGD recognition motifs, known to bind alpha(IIb)beta3, suggesting the different specificity of the integrin. Here, using peptide arrays, mutant fibrinogens, and recombinant mutant gammaC-domains, we have examined the mechanism whereby alpha(IIb)beta3 binds gamma365-383. The alpha(IIb)beta3-binding activity was localized within gamma370-381, with two short sequences, gamma370ATWKTR375 and gamma376WYSMKK381, being able to independently bind the integrin. Furthermore, recognition of alpha(IIb)beta3 by gamma370-381 depended on four basic residues, Lys373, Arg375, Lys380, and Lys381. Simultaneous replacement of these amino acids and deletion of the gamma408AGDV411 sequence in the recombinant gammaC-domain resulted in the loss of alpha(IIb)beta3-mediated platelet adhesion. Confirming the critical roles of the identified residues, abnormal fibrinogen Kaiserslautern, in which gammaLys380 is replaced by Asn, demonstrated delayed clot retraction and impaired alpha(IIb)beta3 binding. Also, a mutant recombinant fibrinogen modeled after the naturally occurring variant Osaka V (gammaArg375 --> Gly) showed delayed clot retraction and reduced binding to purified alpha(IIb)beta3. These results identify the gamma370-381 sequence of fibrin(ogen) as the binding site for alpha(IIb)beta3 involved in platelet adhesion and clot retraction and define the new recognition specificity of this integrin. 相似文献
15.
M L Bajt M H Ginsberg A L Frelinger M C Berndt J C Loftus 《The Journal of biological chemistry》1992,267(6):3789-3794
This work characterizes a mutant integrin alpha IIb beta 3 (glycoprotein (GP) IIb-IIIa) from a thrombasthenic patient, ET, whose platelets fail to aggregate in response to stimuli. The nature of defect was defined by the reduced ability of synthetic peptide ligands, corresponding to the carboxyl terminus of the fibrinogen gamma chain (gamma 402-411) and Arg-Gly-Asp (RGD), to increase the binding of the occupancy-dependent anti-LIBS1 antibody to mutant alpha IIb beta 3 and the reduced binding of mutant alpha IIb beta 3 to an immobilized RGD peptide. In addition, ET's platelets failed to bind the ligand-mimetic monoclonal anti-alpha IIb beta 3, PAC1. DNA sequence analysis of amplified ET genomic DNA revealed a single G----A base change which encoded substitution of R214 by Q in mature beta 3. Introduction of this point mutation into recombinant wild type alpha IIb beta 3 expressed in Chinese hamster ovary cells reproduced the ET platelet alpha IIb beta 3 deficits in binding of fibrinogen, mAb PAC1, and synthetic peptide ligands. Furthermore, substitution of R214 by Q in the synthetic peptide containing the sequence of beta 3(211-222) resulted in decreased ability of this peptide to block fibrinogen binding to purified alpha IIb beta 3. These findings suggest that substitution of beta 3 R214 by Q is responsible for the functional defect in alpha IIb beta 3 and that R214 is proximal to or part of a ligand binding domain in alpha IIb beta 3. 相似文献
16.
Integrin alpha(IIb)beta(3) is the fibrinogen receptor that mediates platelet adhesion and aggregation. The ligand binding function of alpha(IIb)beta(3) is "activated" on the platelet surface by physiologic stimuli. Two forms of alpha(IIb)beta(3) can be purified from platelet lysates. These forms are facsimiles of the resting (Activation State-1 or AS-1) and the active (Activation State-2 or AS-2) conformations of the integrin found on the platelet surface. Here, the differences between purified AS-1 and AS-2 were examined to gain insight into the mechanism of activation. Four major findings are put forth. 1) The association rate (k(1)) between fibrinogen and the integrin is a key difference between AS-1 and AS-2. 2) Although the divalent ion Mn(2+) enhances the ligand binding function of AS-1, this ion is unable to convert AS-1 to AS-2. Therefore, its effect on integrin is unrelated to activation. 3) Peptide mass fingerprints indicate that the chemical structure of AS-1 and AS-2 are virtually identical, calling into question the idea that post-translational modifications are necessary for activation. 4) The two forms of alpha(IIb)beta(3) have significant conformational differences at three positions. These include the junction of the heavy and light chain of alpha(IIb), the divalent ion binding sites on alpha(IIb), and at a disulfide-bonded knot linking the amino terminus of beta(3) to the cysteine-rich domain. These observations indicate that integrin is activated by a series of specific conformational rearrangements in the ectodomain that increase the rate of ligand association. 相似文献
17.
Podolnikova NP Yakubenko VP Volkov GL Plow EF Ugarova TP 《The Journal of biological chemistry》2003,278(34):32251-32258
The interactions of platelets with fibrinogen mediate a variety of responses including adhesion, platelet aggregation, and fibrin clot retraction. Whereas it was assumed that interactions of the platelet integrin alpha IIb beta 3 with the AGDV sequence in the gamma C-domain of fibrinogen and/or RGD sites in the A alpha chains are involved in clot retraction and adhesion, recent data demonstrated that fibrinogen lacking these sites still supported clot retraction. These findings suggested that an unknown site in fibrinogen and/or other integrins participate in clot retraction. Here we have identified a sequence within gamma C that mediates binding of fibrinogen to platelets. Synthetic peptide duplicating the 365-383 sequence in gamma C, designated P3, efficiently inhibited clot retraction in a dose-dependent manner. Furthermore, P3 supported platelet adhesion and was an effective inhibitor of platelet adhesion to fibrinogen fragments. Analysis of overlapping peptides spanning P3 and mutant recombinant gamma C-domains demonstrated that the P3 activity is contained primarily within gamma 370-383. Integrins alpha IIb beta 3 and alpha 5 beta 1 were implicated in recognition of P3, since platelet adhesion to the peptide was blocked by function-blocking monoclonal antibodies against these receptors. Direct evidence that alpha IIb beta 3 and alpha 5 beta 1 bind P3 was obtained by selective capture of these integrins from platelet lysates using a P3 affinity matrix. Thus, these data suggest that the P3 sequence in the gamma C-domain of fibrinogen defines a previously unknown recognition specificity of alpha IIb beta 3 and alpha 5 beta 1 and may function as a binding site for these integrins. 相似文献
18.
L V Parise 《Current opinion in cell biology》1999,11(5):597-601
Intracellular signals are received and generated by the alpha(IIb)beta(3) integrin on platelets. Recent advances have been made in the areas of agonist receptors that initiate platelet activation, downstream signaling molecules (e.g. small G-proteins and kinases) and changes in ligand-occupied alpha(IIb)beta(3) that cause further signaling and clot retraction. 相似文献
19.
M L Bajt J C Loftus M P Gawaz M H Ginsberg 《The Journal of biological chemistry》1992,267(31):22211-22216
Integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) is a prototype of integrins involved in cellular adhesive functions. As part of a structure-function analysis of this molecule, we constructed a mutant, designated alpha IIb beta 3 (beta 1-2), by replacing 6 amino acids within a putative ligand binding domain of the beta 3 subunit with sequences derived from beta 1. The alteration did not affect the capacity of beta 3(beta 1-2) to combine with transfected alpha IIb, nor did it cause it to combine with endogenous alpha 5. Integrin alpha IIb beta 3(beta 1-2) was in a "resting" state on Chinese hamster ovary cells as judged by minimal binding of an activation-specific anti-alpha IIb beta 3, PAC1. Nevertheless, cells expressing alpha IIb beta 3(beta 1-2) spontaneously bound fibrinogen with low affinity (Ka = (4.85 +/- 0.84) x 10(6) M-1). Activation with an anti-beta 3 antibody (monoclonal antibody 62) resulted in a 10-fold increase in fibrinogen binding affinity (Ka = (4.55 +/- 0.77) x 10(7) M-1), which was 3-fold greater than fibrinogen binding to activated wild type alpha IIb beta 3 (Ka = (1.66 +/- 0.33) x 10(7) M-1, F = 7.46, p = 0.008). The mutant receptor also bound fibrinogen mimetic peptide ligands with enhanced affinity as measured by the conformation-specific antibody, anti-LIBS1. This indicates that the increased affinity for fibrinogen was caused by enhanced interaction of alpha IIb beta 3(beta 1-2) with known recognition sequences in fibrinogen. Thus, this gain of function mutant augments ligand binding function, supporting a role for this region of the beta subunit in ligand binding to integrins. 相似文献