首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The early steps (<1 ns) in the photocycle of the detergent solubilized proton pump proteorhodopsin are analyzed by ultrafast spectroscopic techniques. A comparison to the first primary events in reconstituted proteorhodopsin as well as to the well known archaeal proton pump bacteriorhodopsin is given. A dynamic Stokes shift observed in fs-time-resolved fluorescence experiments allows a direct observation of early motions on the excited state potential energy surface. The initial dynamics is dominated by sequentially emerging stretching (<150 fs) and torsional (approximately 300 fs) modes of the retinal. The different protonation states of the primary proton acceptor Asp-97 drastically affect the reaction rate and the overall quantum efficiencies of the isomerization reactions, mainly evidenced for time scales above 1 ps. However, no major influence on the fast time scales (approximately 150 fs) could be seen, indicating that the movement out of the Franck-Condon region is fairly robust to electrostatic changes in the retinal binding pocket. Based on fs-time-resolved absorption and fluorescence spectra, ground and exited state contributions can be disentangled and allow to construct a reaction model that consistently explains pH-dependent effects in solubilized and reconstituted proteorhodopsin.  相似文献   

2.
Similarly to bacteriorhodopsin, proteorhodopsin that normally contains all-trans and 13-cis retinal is transformed at low pH to a species containing 9-cis retinal under continuous illumination at lambda > 530 nm. This species, absorbing around 430 nm, returns thermally in tens of minutes to initial pigment and can be reconverted also with blue-light illumination. The yield of the 9-cis species is negligibly small at neutral pH but increases manyfold (>100) at acid pH with a pK(a) of 2.6. This indicates that protonation of acidic group(s) alters the photoreaction pathway that leads normally to all-trans --> 13-cis isomerization. In the D97N mutant, in which one of the two acidic groups in the vicinity of the retinal Schiff base is not ionizable, the yield of 9-cis species at low pH shows a pH dependence similar to that in the wild-type but with a somewhat increased pK(a) of 3.3. In contrast to this relatively minor effect, replacement of the other acidic group, Asp227, with Asn results in a remarkable, more than 50-fold, increase in the yield of the light-induced formation of 9-cis species in the pH range 4-6. It appears that protonation of Asp227 at low pH is what causes the dramatic increase in the yield of the 9-cis species in wild-type proteorhodopsin. We conclude that the photoisomerization pathways in proteorhodopsin to 13-cis or 9-cis photoproducts are controlled by the charge state of Asp227.  相似文献   

3.
In the presented study the low pH photocycle of proteorhodopsin is extensively investigated by means of low temperature FTIR spectroscopy. Besides the already well-known characteristics of the all-trans and 13-cis retinal vibrations the 77K difference spectrum at pH 5.1 shows an additional negative signal at 1744 cm(-1) which is interpreted as indicator for the L state. The subsequent photocycle steps are investigated at temperatures higher than 200K. The combination of visible and FTIR spectroscopy enabled us to observe that the deprotonation of the Schiff base is linked to the protonation of an Asp or Glu side chain - the new proton acceptor under acidic conditions. The difference spectra of the late intermediates are characterized by large amide I changes and two further bands ((-)1751 cm(-1)/(+)1725 cm(-1)) in the spectral region of the Asp/Glu ν(C=O) vibrations. The band position of the negative signature points to a transient deprotonation of Asp-97. In addition, the pH dependence of the acidic photocycle was investigated. The difference spectra at pH 5.5 show distinct differences connected to changes in the protonation state of key residues. Based on our data we propose a three-state model that explains the complex pH dependence of PR.  相似文献   

4.
In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base.  相似文献   

5.
Tatsuo Suzuki  Momoyo Makino 《BBA》1981,636(1):27-31
The composition of retinal isomers in the photosteady-state mixtures formed from squid rhodopsin and metarhodopsin was determined by high-pressure liquid chromatography. A large amount of 9-cis-retinal was obtained at liquid N2 temperature when rhodopsin was irradiated with orange light, but only small quantities of 9-cis-retinal were obtained at 15°C. Scarcely any 9-cis-retinal was produced from metarhodopsin by irradiation at liquid N2 temperature. A large quantity of 7-cis-retinal was found in the photoproduct of rhodopsin irradiated at solid carbon dioxide temperature, but not at 15°C and liquid N2 temperature. 7-cis-Retinal was not produced from metarhodopsin at any temperatures. These results indicate that the photoisomerization of retinal is regulated by the structure of the retinal-binding site of this protein. The formation of 9-cis- and 7-cis-retinals is forbidden in the metarhodopsin protein.  相似文献   

6.
A quantum-classical model of photoisomerization of the visual pigment rhodopsin chromophore is proposed. At certain (and more realistic) parameter value combinations, the model is shown to accurately reproduce a number of independent experimental data on the photoreaction dynamics: the quantum yield, the time to reach the point of conical intersection of potential energy surfaces, the termination time of the evolution of quantum subsystem, as well as the characteristic low frequencies of retinal molecular lattice fluctuations during photoisomerization. In addition, the model behavior is in good accordance with experimental data about coherence and local character of quantum transition.  相似文献   

7.
Proteorhodopsin is photoactive 7-transmembrane protein, which uses all-trans retinal as a chromophore. Proteorhodopsin subfamilies are spectrally tuned in accordance with the depth of habitat of the host organisms, numerous species of marine picoplankton. We try to find residues critical for the spectral tuning through the use of random PCR mutagenesis and endogenous retinal biosynthesis. We obtained 16 isolates with changed color by screening in Escherichia coli with internal retinal biosynthesis system containing genes for beta-carotene biosynthesis and retinal synthase. Some isolates contained multiple substitutions, which could be separated to give 20 single mutations influencing the spectral properties. The color-changing residues are distributed through the protein except for the helix A, and about a half of the mutations is localized on the helices C and D, implying their importance for color tuning. In the pumping form of the pigment, absorption maxima in 8 mutants are red-shifted and in 12 mutants are blue-shifted compared to the wild-type. The results of flash-photolysis showed that most of the low pumping activity mutants possess slower rates of M decay and O decay. These results suggest that the color-tuning residues are not restricted to the retinal binding pocket, in accord with a recent evolutionary analysis.  相似文献   

8.
Ikeda D  Furutani Y  Kandori H 《Biochemistry》2007,46(18):5365-5373
Proteorhodopsin (PR), an archaeal-type rhodopsin found in marine bacteria, is a light-driven proton pump similar to bacteriorhodopsin (BR). It is known that Asp97, a counterion of the protonated Schiff base, possesses a higher pKa ( approximately 7) compared to that of homologous Asp85 in BR (<3). This suggests that PR has a hydrogen-bonding network different from that of BR. We previously reported that a strongly hydrogen-bonded water molecule is observed only in the alkaline form of PR, where Asp97 is deprotonated (Furutani, Y., Ikeda, D., Shibata, M., and Kandori, H. (2006) Chem. Phys. 324, 705-708). This is probably correlated with the pH-dependent proton pumping activity of PR. In this work, we studied the water-containing hydrogen-bonding network in the Schiff base region of PR by means of Fourier-transform infrared (FTIR) spectroscopy at 77 K. [zeta-15N]Lys-labeling and 18O water were used for assigning the Schiff base N-D and water O-D stretching vibrations in D2O, respectively. The frequency upshift of the N-D stretch in the primary K intermediate is much smaller for PR than for BR, indicating that the Schiff base forms a hydrogen bond after retinal photoisomerization. We then measured FTIR spectra of the mutants of Asp97 (D97N and D97E) and Asp227 (D227N and D227E) to identify the amino acid interacting with the Schiff base in the K state. The PRK minus PR spectra of D97N and D97E were similar to those of the acidic and alkaline forms, respectively, of the wild type implying that the structural changes upon retinal photoisomerization are not influenced by the mutation at Asp97. In contrast, clear spectral differences were observed in D227N and D227E, including vibrational bands of the Schiff base and water molecules. It is concluded that Asp227 plays a crucial role during the photoisomerization process, though Asp97 acts as the primary counterion in the unphotolyzed state of PR.  相似文献   

9.
Bacteriorhodopsin (BR), a light-driven proton pump in Halobacterium salinarum, accommodates two resting forms of the retinylidene chromophore, the all-trans form (AT-BR) and the 13-cis,15-syn form (13C-BR). Both isomers are present in thermal equilibrium in the dark, but only the all-trans form has proton-pump activity. In this study, we applied low-temperature Fourier-transform infrared (FTIR) spectroscopy to 13C-BR at 77 K and compared the local structure around the chromophore before and after photoisomerization with that in AT-BR. Strong hydrogen-out-of-plane (HOOP) vibrations were observed at 964 and 958 cm(-)(1) for the K state of 13C-BR (13C-BR(K)) versus a vibration at 957 cm(-)(1) for the K state of AT-BR (AT-BR(K)). In AT-BR(K), but not in 13C-BR(K), the HOOP modes exhibit isotope shifts upon deuteration of the retinylidene at C15 and at the Schiff base nitrogen. Whereas the HOOP modes of AT-BR(K) were significantly affected by the mutation of Thr89, this was not the case for the HOOP modes of 13C-BR(K). These observations imply that, while the chromophore distortion is localized near the Schiff base in AT-BR(K), it is located elsewhere in 13C-BR(K). By use of [zeta-(15)N]lysine-labeled BR, we identified the N-D stretching vibrations of the 13C-BR Schiff base (in D(2)O) at 2173 and 2056 cm(-)(1), close in frequency to those of AT-BR. These frequencies indicate strong hydrogen bonding of the Schiff base in 13C-BR, presumably with a water molecule as in AT-BR. In contrast, the N-D stretching vibration appears at 2332 and 2276 cm(-)(1) in 13C-BR(K) versus values of 2495 and 2468 cm(-)(1) for AT-BR(K), suggesting that the rupture of the Schiff base hydrogen bond that occurs in AT-BR(K) does not occur in 13C-BR(K). Rotational motion of the Schiff base upon retinal isomerization is probably smaller in magnitude for 13C-BR than for AT-BR. These differences in the primary step are possibly related to the absence of light-driven proton pumping by 13C-BR.  相似文献   

10.
So Young Kim  Leonid S. Brown 《BBA》2008,1777(6):504-513
Proteorhodopsin is photoactive 7-transmembrane protein, which uses all-trans retinal as a chromophore. Proteorhodopsin subfamilies are spectrally tuned in accordance with the depth of habitat of the host organisms, numerous species of marine picoplankton. We try to find residues critical for the spectral tuning through the use of random PCR mutagenesis and endogenous retinal biosynthesis. We obtained 16 isolates with changed color by screening in Escherichia coli with internal retinal biosynthesis system containing genes for beta-carotene biosynthesis and retinal synthase. Some isolates contained multiple substitutions, which could be separated to give 20 single mutations influencing the spectral properties. The color-changing residues are distributed through the protein except for the helix A, and about a half of the mutations is localized on the helices C and D, implying their importance for color tuning. In the pumping form of the pigment, absorption maxima in 8 mutants are red-shifted and in 12 mutants are blue-shifted compared to the wild-type. The results of flash-photolysis showed that most of the low pumping activity mutants possess slower rates of M decay and O decay. These results suggest that the color-tuning residues are not restricted to the retinal binding pocket, in accord with a recent evolutionary analysis.  相似文献   

11.
Kandori H  Shimono K  Shichida Y  Kamo N 《Biochemistry》2002,41(14):4554-4559
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption spectrum with a spectral shoulder, which is highly unique for the archaeal rhodopsin family. The primary reaction of ppR is a cis-trans photoisomerization of the retinal chromophore to form the K intermediate, like the well-studied proton pump bacteriorhodopsin (BR). Recent comparative FTIR spectroscopy of the K states in ppR and BR revealed that more extended structural changes take place in ppR than in BR with respect to chromophore distortion and protein structural changes [Kandori, H., Shimono, K., Sudo, Y., Iwamoto, M., Shichida, Y., and Kamo, N. (2001) Biochemistry 40, 9238-9246]. FTIR spectroscopy of the N105D mutant protein reported here assigns the vibrational bands at 1704 and 1700 cm(-1) as C=O stretches of Asn105 in ppR and ppR(K), respectively. A comparative investigation between ppR and BR further reveals that the structure at position 105 in ppR is similar to that of the corresponding position (Asp115) in BR; this observation is supported by the recent X-ray crystallographic structures of ppR [Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001) Science 293, 1499-1503; Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroulla, E., and Navarro, J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 10131-10136]. Nevertheless, structural changes upon photoisomerization at position 105 in ppR are greater than those at position 115 in BR. As a consequence of a unique chromophore-protein interaction in ppR, extended protein structural changes accompanying retinal photoisomerization occur, and these include Asn105 which is approximately 7 A from the retinal chromophore.  相似文献   

12.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   

13.
Proteorhodopsins (PRs), the recently discovered light-driven proton pumps, play a major role in supplying energy for microbial organisms of oceans. In contrast to PR, rhodopsins found in Archaea and Eukarya are structurally well characterized. Using single-molecule microscopy and spectroscopy, we observed the oligomeric assembly of native PR molecules and detected their folding in the membrane. PR showed unfolding patterns identical with those of bacteriorhodopsin and halorhodopsin, indicating that PR folds similarly to archaeal rhodopsins. Surprisingly, PR predominantly assembles into hexameric oligomers, with a smaller fraction assembling into pentamers. Within these oligomers, PR arranged into radial assemblies. We suggest that this structural assembly of PR may have functional implications.  相似文献   

14.
Rangarajan R  Galan JF  Whited G  Birge RR 《Biochemistry》2007,46(44):12679-12686
The absorption spectrum of green proteorhodopsin (GPR) is pH-dependent, exhibiting either red-shifted (low pH) or blue-shifted (high pH) absorption maxima. We examine the molecular basis of the pH-dependent spectral properties of green proteorhodopsin by using homology modeling and molecular orbital theory. Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII) are compared as homology templates. The model of GPR generated by using BR as the homology parent is better than that generated by using SRII on the basis of the potential energy, relative stability to dynamics, and ability to rationalize pH effects. MNDO-PSDCI (molecular neglect of differential overlap with partial single- and double-configuration interaction) calculations provide insight into the spectroscopic properties of GPR and help rule out the viability of the SRII-based model. The proximity of His 75 to the quadrupole residues (LYR, D97, D227, and R94) in the BR-based model provides a good model for both the low- and high-pH spectral states of GPR. The observation that BR is a better structural model for GPR than SRII is in contrast to our previous study of BPR, which observed that SRII was the better homology parent [Hillebrecht, J. R. (2006) Biochemistry 45, 1579-1590]. The implications of this observation are discussed.  相似文献   

15.
The relative quantum yields of the photoreactions Rhodopsin in equilibrium Bathorhodopsin in equilibrium Isorhodopsin over an extended wavelength region have been determined in cattle and squid rhodopsins at 77 degrees K. The quantum yields were found to be wavelength independent and unchanged for samples suspended in D2O. The rhodopsin-bathorhodopsin forward and backward quantum yields sum to larger than one. These results are consistent with the previous suggestion that the excited singlet potential of rhodopsin has a single minimum along the 11-12 torsional coordinate. The values of the quantum yields are important for evaluating dynamic models of the rhodopsin-bathorhodopsin transition. We conclude that equilibration in the common excited state afer excitation of rhodopsin, as previously suggested, does not occur. Models involving molecular excitation trajectories conserving torsional momenta and excited state to ground state surface crossings better fit the data, and a semiquantitative analysis is presented. Probabilities of surface crossings are calculated.  相似文献   

16.
Maiti TK  Yamada K  Inoue K  Kandori H 《Biochemistry》2012,51(15):3198-3204
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria. Thousands of PRs are classified into blue-absorbing (λ(max) ~ 490 nm) and green-absorbing (λ(max) ~ 525 nm) PR, and the color determinant is known to be at position 105, where blue-absorbing and green-absorbing PR possess Gln and Leu, respectively. Position 105 is in contact with the retinal chromophore in the hydrophobic region of the cytoplasmic side. In this paper, we have introduced a positively charged lysine group at position 105, which is the first report of the introduction of a positively charged group into the hydrophobic cytoplasmic domain in microbial rhodopsins. The L105K mutant PR shows an ~21 nm red shift (λ(max) ~ 549 nm) at pH 7.0, and the pK(a) of the counterion (7.2) does not change significantly compared to that of wild-type PR (6.8). The analysis of thermal stability shows that the mutation causes some destabilization of structure, but the mutant is more stable toward hydroxylamine reaction than the wild type. The flash photolysis measurement at pH 9.0 shows that the decay of the M intermediate of L105K is ~3 times slower than that of the wild type. The slow M decay possibly originates from the perturbation of the proton donor (Glu108) and the retinal Schiff base due to positioning of a positively charged lysine group in the proton transfer pathway. The perturbation of proton transport is also observed when we measure light-induced proton pumping. The rate of proton transport in L105K mutant is 6 times slower than that of the wild type, which corroborates our flash photolysis result.  相似文献   

17.
The pH dependence of the subpicosecond decay of the retinal photoexcited state in bacteriorhodopsin (bR) is determined in the pH range 6.8-11.3. A rapid change in the decay rate of the retinal photoexcited state is observed in the pH range 9-10, the same pH range in which a rapid change in the M412 formation kinetics was observed. This observation supports the previously proposed heterogeneity model in which parallel photocycles contribute to the observed pH dependence of the M412 formation kinetics in bR.  相似文献   

18.
Abundant proteorhodopsin genes in the North Atlantic Ocean   总被引:5,自引:0,他引:5  
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique , a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 ( P. ubique and other SAR11 Alphaproteobacteria ), BACRED17H8 ( Alphaproteobacteria ), HOT2C01 ( Alphaproteobacteria ) and an uncultured subgroup of the Flavobacteria . Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.  相似文献   

19.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   

20.
Archaeal rhodopsins possess a retinal molecule as their chromophores, and their light energy and light signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of the protein then leads to functional processes, proton pump in bacteriorhodopsin and transducer activation in sensory rhodopsins. In the present paper, low-temperature Fourier transform infrared spectroscopy is applied to phoborhodopsin from Natronobacterium pharaonis (ppR), a photoreceptor for the negative phototaxis of the bacteria, and infrared spectral changes before and after photoisomerization are compared with those of bacteriorhodopsin (BR) at 77 K. Spectral comparison of the C--C stretching vibrations of the retinal chromophore shows that chromophore conformation of the polyene chain is similar between ppR and BR. This fact implies that the unique chromophore-protein interaction in ppR, such as the blue-shifted absorption spectrum with vibrational fine structure, originates from both ends, the beta-ionone ring and the Schiff base regions. In fact, less planer ring structure and stronger hydrogen bond of the Schiff base were suggested for ppR. Similar frequency changes upon photoisomerization are observed for the C==N stretch of the retinal Schiff base and the stretch of the neighboring threonine side chain (Thr79 in ppR and Thr89 in BR), suggesting that photoisomerization in ppR is driven by the motion of the Schiff base like BR. Nevertheless, the structure of the K state after photoisomerization is different between ppR and BR. In BR, chromophore distortion is localized in the Schiff base region, as shown in its hydrogen out-of-plane vibrations. In contrast, more extended structural changes take place in ppR in view of chromophore distortion and protein structural changes. Such structure of the K intermediate of ppR is probably correlated with its high thermal stability. In fact, almost identical infrared spectra are obtained between 77 and 170 K in ppR. Unique chromophore-protein interaction and photoisomerization processes in ppR are discussed on the basis of the present infrared spectral comparison with BR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号