首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1‐allyloxy‐4‐propoxybenzene, 3c {3,6}) chosen for behavioural testing. An assay to evaluate the blood‐host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c {3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood‐host and probe less at the host odour. Thus, 3c {3,6} may be an effective repellent for the control of A. gambiae.  相似文献   

4.
疟蚊主要依靠嗅觉发现寄主。非洲疟蚊冈比亚按蚊Anopheles gambiae是一种嗜吸人血的疟疾传播媒介昆虫。该文作者基于其全基因组序列,采用RT-PCR和标准分子克隆技术获得2个嗅觉结合蛋白候选基因agLZ3788agLZ9988。测序分析结果表明,它们具有嗅觉结合蛋白的标志性结构域。进一步采用半定量RT-PCR技术研究了它们的空间表达型,结果发现它们不但在雌蚊触角中表达,也在其他部位(尤其是蚊虫足部)有强的表达。这一发现说明疟蚊嗅觉结合蛋白可能具有更广的功能,也为进一步重组表达和功能研究提供了重要依据。  相似文献   

5.
The epidemiology of malaria in Africa is complicated by the fact that its principal vector, the mosquito Anopheles gambiae, constitutes a complex of six sibling species. Each species is characterized by a unique array of paracentric inversions, as deduced by karyotypic analysis. In addition, most of the species carry a number of polymorphic inversions. In order to develop an understanding of the evolutionary histories of different parts of the genome, we compared the genetic variation of areas inside and outside inversions in two distinct inversion karyotypes of A. gambiae. Thirty-five cDNA clones were mapped on the five arms of the A. gambiae chromosomes with divisional probes. Sixteen of these clones, localized both inside and outside inversions of chromosome 2, were used as probes in order to determine the nucleotide diversity of different parts of the genome in the two inversion karyotypes. We observed that the sequence diversity inside the inversion is more than threefold lower than in areas outside the inversion and that the degree of divergence increases gradually at loci at increasing distance from the inversion. To interpret the data we present a selectionist and a stochastic model, both of which point to a relatively recent origin of the studied inversion and may suggest differences between the evolutionary history of inversions in Anopheles and Drosophila species.Correspondence to: K.D. Mathiopoulos  相似文献   

6.
A recombinant Anopheles gambiae defensin peptide was used to define the antimicrobial activity spectrum against bacteria, filamentous fungi and yeast. Results showed that most of the Gram-positive bacterial species tested were sensitive to the recombinant peptide in a range of concentrations from 0.1 to 0.75 microM. No activity was detected against Gram-negative bacteria, with the exception of some E. coli strains. Growth inhibitory activity was detected against some species of filamentous fungi. Defensin was not active against yeast. The kinetics of bactericidal and fungicidal effects were determined for Micrococcus luteus and Neurospora crassa, respectively. Differential mass spectrometry analysis was used to demonstrate induction of defensin in the hemolymph of bacteria-infected adult female mosquitoes. Native peptide levels were quantitated in both hemolymph and midgut tissues. The polytene chromosome position of the defensin locus was mapped by in situ hybridization.  相似文献   

7.
Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An. gambiae but weakly potent for the human enzyme could potentially be safely deployed on a new class of ITNs. In this paper we provide a preliminary pharmacological characterization of An. gambiae AChE, discuss structural features of An. gambiae and human AChE that could lead to selective inhibition, and describe compounds with 130-fold selectivity for inhibition of An. gambiae AChE relative to human AChE.  相似文献   

8.
Malaria remains a major public health problem that is made worse by poor implementation of control measures, and by the spread of drug- and insecticide-resistant parasites and vectors, respectively. Availability of the Anopheles gambiae genome sequence will accelerate identification and exploitation of new target genes in this insect vector. This provides unique opportunities to improve on existing vector control tools and to generate new tools within a global partnership. However, significant capacity needs to be built for investigators in disease-endemic countries to exploit the genome data. When integrated with existing strategies, the new tools will form an effective package for selective vector control in an effort to prevent mortality and morbidity due to malaria.  相似文献   

9.
10.
11.
12.
CRISPR/Cas9 technologies are important tools for the development of gene-drive systems to modify mosquito vector populations to control the transmission of pathogens that cause diseases such as malaria. However, one of the challenges for current Cas9-based drive systems is their ability to produce drive-resistant alleles resulting from insertions and deletions (indels) caused principally by nonhomologous end-joining following chromosome cleavage. Rapid increases in the frequency of such alleles may impair gene-drive dynamics. We explored the generation of indels in the germline and somatic cells in female gene-drive lineages using a series of selective crosses between a gene-drive line, AgNosCd-1, and wild-type mosquitoes. We find that potential drive-resistant mutant alleles are generated largely during embryonic development, most likely caused by deposition of the Cas9 endonuclease and guide RNAs in oocytes and resulting embryos by homozygous and hemizygous gene-drive mothers.  相似文献   

13.
Mosquitoes exhibit ∼24 h rhythms in physiology and behavior, regulated by the cooperative action of an endogenous circadian clock and the environmental light:dark cycle. Here, we characterize diel (observed under light:dark conditions) time-of-day changes in metabolic detoxification and resistance to insecticide challenge in Anopheles gambiae mosquitoes. A better understanding of mosquito chronobiology will yield insights into developing novel control strategies for this important disease vector. We have previously identified >2000 rhythmically expressed An. gambiae genes. These include metabolic detoxification enzymes peaking at various times throughout the day. Especially interesting was the identification of rhythmic genes encoding enzymes capable of pyrethroid and/or DDT metabolism (CYP6M2, CYP6P3, CYP6Z1, and GSTE2). We hypothesized that these temporal changes in gene expression would confer time-of-day specific changes in metabolic detoxification and responses to insecticide challenge. An. gambiae mosquitoes (adult female Pimperena and Mali-NIH strains) were tested by gene expression analysis for diel rhythms in key genes associated with insecticidal resistance. Biochemical assays for total GST, esterase, and oxidase enzymatic activities were undertaken on time-specific mosquito head and body protein lysates. To determine for rhythmic susceptibility to insecticides by survivorship, mosquitoes were exposed to DDT or deltamethrin across the diel cycle. We report the occurrence of temporal changes in GST activity in samples extracted from the body and head with a single peak at late-night to dawn, but no rhythms were detected in oxidase or esterase activity. The Pimperena strain was found to be resistant to insecticidal challenge, and subsequent genomic analysis revealed the presence of the resistance-conferring kdr mutation. We observed diel rhythmicity in key insecticide detoxification genes in the Mali-NIH strain, with peak phases as previously reported in the Pimperena strain. The insecticide sensitive Mali-NIH strain mosquitoes exhibited a diel rhythm in survivorship to DDT exposure and a bimodal variation to deltamethrin challenge. Our results demonstrate rhythms in detoxification and pesticide susceptibility in An. gambiae mosquitoes; this knowledge could be incorporated into mosquito control and experimental design strategies, and contributes to our basic understanding of mosquito biology.  相似文献   

14.
Antibody labelling and subsequent three-dimensional reconstructions of the primary olfactory centres, the antennal lobes, of male and female African malaria mosquitoes, Anopheles gambiae, revealed 61 and 60 glomerular neuropils respectively. In addition to the small difference in number of glomeruli, sexual dimorphism was observed in both the size of the antennal lobe and of individual glomeruli. Furthermore, sexual specificity was observed within the array. Anterograde staining of afferents from peripheral olfactory organs support the reconstruction of the glomerular array. Although anterograde stainings support an organotopic organization of the antennal lobe, convergence of afferents originating from different organs into single glomeruli is observed. This finding, in both A. gambiae and A. aegypti, may shed new light upon the development and function of the olfactory system.  相似文献   

15.
Abstract. Human sweat samples were chemically fractionated into acid and non-acid components. The most abundant volatile compounds present in the fractions were identified by linked gas chromatography mass spectrometry. The acid fractions were found to be composed of a range of twenty aliphatic and three aromatic carboxylic acids ranging, on average, from 0.02 to 20 ig per ml of sweat sampled. Non-acid fractions were found to contain: 6-methyl-5-hepten-2-one, l-octen-3-ol, decanal, benzyl alcohol, dimethylsulphone, phenylethanol, phenol and 4-mefhylphenol, collectively amounting to 0.1 and 3 |ig per ml of sweat. The major component of sweat was found to be L-lactic acid which constituted from 1 to 5 mg/ml.
Using the intact antennae of the anthropophilic malaria vector mosquito Anopheles gambiae Giles, the peripheral olfactory activities of compounds identified in the sweat fractions were investigated by electroantennography (EAG). Short-chain saturated carboxylic acids, methanoic, ethanoic, propanoic, butanoic, pentanoic and hexanoic acids were found to elicit significantly larger EAG responses than longer chain saturated carboxylic acids from female An.gambiae. For a given dose the largest amplitude EAG response was elicited by methanoic acid. Pentanoic acid elicited larger EAG responses than either butanoic or hexanoic acids. Two non-acidic compounds, l-octen-3-ol and 4-methylphenol, were found to elicit significant dose-dependent EAG responses from female An.gambiae. 1 -Octen-3-ol elicited larger EAG responses than 4-methylphenol for a given dose, but both compounds elicited smaller EAG responses than the same dose of C]-C6straight-chain aliphatic carboxylic acids. The possible behavioural significance of the EAG-active compounds identified in human sweat samples is discussed.  相似文献   

16.
The Mosaic (Mos) mutation, isolated in the F1 of 60Co-irradiated mosquitoes, confers variegated eye color to third and fourth instar larvae, pupae, and adults of the mosquito Anopheles gambiae. Mos is recessive in wild pink eye (p+) individuals, but is dominant and confers areas of wild-type pigment in mutant pink eye backgrounds. Mos is located 14.4 cM from pink eye on the X chromosome and is associated with a duplication of division 2B euchromatin that has been inserted into division 6 heterochromatin. Various combinations of Mos, pink eye alleles, and the autosomal mutation red eye were produced. In all cases, the darker pigmented regions of the eye in Mos individuals show the phenotypic interactions expected if the phenotype of those regions is due to expression of a p+ allele. Expression of Mos is suppressed by rearing larvae at 32 degrees C relative to 22 degrees C. All of these characteristics are consistent with Mos being a duplicated wild copy of the pink eye gene undergoing position-effect variegation.  相似文献   

17.
Using a dual-choice olfactometer, the role of L-lactic acid was investigated in relation to host-seeking and selection by female Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) mosquitoes in a Y-tube bioassay. L-lactic acid alone was not attractive, but it significantly augmented the attractiveness of CO2, skin odour and skin-rubbing extracts from humans and other vertebrates. Comparing the left and right index fingers of the same person, one could be made more attractive than the other by adding L-lactic acid to the air stream over that finger. The difference in L-lactic acid concentration between the two air streams offered to the mosquitoes fell within the natural range of variation emanating from a human hand, suggesting that L-lactic acid modulates intraspecific host selection by An. gambiae. Analysis of skin rubbings from various vertebrates (carnivores, chickens, primates, rodents, ungulates) indicated that humans have uniquely high levels of L-lactic acid on their skin. Tests with extracts of skin rubbings from cows and humans, with and without added L-lactic acid, suggest that naturally lower levels of L-lactic acid contribute to the lesser attractiveness of non-humans to An. gambiae s.s.  相似文献   

18.
Malaria vector mosquitoes belonging to the Anopheles gambiae complex were studied in four hamlets in The Gambia. All inhabitants were given bednets treated either with a placebo (milk) in two hamlets or with the pyrethroid insecticide permethrin (500 mg/m2) in two other hamlets. Malaria transmission occurred mainly during a few weeks of the rainy season, in September and October 1987. The indoor resting densities of mosquitoes in permethrin-treated hamlets were reduced, and we estimated over 90% reduction in biting on man by An. gambiae Giles sensu stricto in these hamlets. No mosquitoes were found under permethrin-treated bednets compared with eighty-one recovered from placebo-treated bednets. Mosquitoes exited more readily from rooms where permethrin-treated bednets were used than from rooms with placebo-treated nets. The annual mean probability that a child would receive an infective bite was estimated to be 0.09 in hamlets with insecticide-treated bednets, compared with 1.9 where placebo-treated bednets were used. Permethrin-treated bednets are therefore recommended as a means of effectively reducing the risk of exposure to malaria transmission, particularly in areas of low seasonal transmission.  相似文献   

19.
Kun Yan Zhu 《Insect Science》2013,20(2):158-166
Abstract Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control. However, our understanding of biochemical properties of insect CHSs has been very limited. We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito, Anopheles gambiae. Our study, which represents the first time to use a nonradioactive method to assay CHS activity in an insect species, determined the optimal conditions for measuring the enzyme activity, including pH, temperature, and concentrations of the substrate uridine diphosphate N‐acetyl‐d ‐glucosamine (UDP‐GlcNAc) and Mg++. The optimal pH was about 6.5–7.0, and the highest activity was detected at temperatures between 37°C and 44°C. Dithithreitol is required to prevent melanization of the enzyme extract. CHS activity was enhanced at low concentration of GlcNAc, but inhibited at high concentrations. Proteolytic activation of the activity is significant both in the 500 ×g supernatant and the 40 000 ×g pellet. Our study revealed only slight in vitro inhibition of A. gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5 μmol/L) examined. There was no in vitro inhibition by polyoxin D at any concentration examined. Furthermore, we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined. Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A. gambiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号