首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rises in intracellular calcium cause several events of physiological significance, including the regulated release of neuronal transmitters. In this study, the effects of divalent cations on the structural organization of cytomatrix in presynaptic terminals was examined. [35S]Methionine-radiolabeled guinea pig retinal ganglion cell cytomatrix proteins were axonally transported [in slow component b (SCb) of axonal transport] to the neuron terminals in the superior colliculus. When the peak of radiolabeled cytomatrix proteins reached the terminals, synaptosomes containing the radiolabeled cytomatrix proteins were prepared. Approximately 40% of each SCb protein was soluble after hypoosmotic lysis of the radiolabeled synaptosomes in the presence of divalent cation chelators. Lysis of synaptosomes in the presence of calcium ions over a range of concentrations, however, caused a dramatic decrease in solubility of the presynaptic SCb proteins. The cytoplasmic effects may result from a calcium-dependent condensation of cytoplasm around presynaptic terminal membrane systems. There are two major presynaptic SCb proteins (at 60 and 35 kDa), that exhibited exceptional behavior: they remained as soluble in the presence of calcium as under control conditions, suggesting that they were relatively unaffected by the mechanism causing the decrease in SCb protein solubility. Also examined were the effects of other alkaline earth and transition metal divalent cations on the presynaptic SCb proteins.  相似文献   

2.
Synaptic neurotransmission is known to be an energy demanding process. At the presynapse, ATP is required for loading neurotransmitters into synaptic vesicles, for priming synaptic vesicles before release, and as a substrate for various kinases and ATPases. Although it is assumed that presynaptic sites usually harbor local mitochondria, which may serve as energy powerhouse to generate ATP as well as a presynaptic calcium depot, a clear role of presynaptic mitochondria in biochemical functioning of the presynapse is not well-defined. Besides a few synaptic subtypes like the mossy fibers and the Calyx of Held, most central presynaptic sites are either en passant or tiny axonal terminals that have little space to accommodate a large mitochondrion. Here, we have used imaging studies to demonstrate that mitochondrial antigens poorly co-localize with the synaptic vesicle clusters and active zone marker in the cerebral cortex, hippocampus and the cerebellum. Confocal imaging analysis on neuronal cultures revealed that most neuronal mitochondria are either somatic or distributed in the proximal part of major dendrites. A large number of synapses in culture are devoid of any mitochondria. Electron micrographs from neuronal cultures further confirm our finding that the majority of presynapses may not harbor resident mitochondria. We corroborated our ultrastructural findings using serial block face scanning electron microscopy (SBFSEM) and found that more than 60% of the presynaptic terminals lacked discernible mitochondria in the wild-type mice hippocampus. Biochemical fractionation of crude synaptosomes into mitochondria and pure synaptosomes also revealed a sparse presence of mitochondrial antigen at the presynaptic boutons. Despite a low abundance of mitochondria, the synaptosomal membranes were found to be highly enriched in ATP suggesting that the presynapse may possess alternative mechanism/s for concentrating ATP for its function. The potential mechanisms including local glycolysis and the possible roles of ATP-binding synaptic proteins such as synapsins, are discussed.  相似文献   

3.
Monoclonal antibodies were generated by immunizing mice with chick brain synaptic membranes and screening for immunoprecipitation of solubilized conotoxin GVIA receptors (N-type calcium channels). Antibodies against two synaptic proteins (p35--syntaxin 1 and p58--synaptotagmin) were produced and used to purify and characterize a ternary complex containing N-type channels associated with these two proteins. These results provided the first evidence for a specific interaction between presynaptic calcium channels and SNARE proteins involved in synaptic vesicle docking and calcium-dependent exocytosis. Immunoprecipitation experiments supported the conclusion that syntaxin 1/SNAP-25/VAMP/synaptotagmin I or II complexes associate with N-type, P/Q-type, but not L-type calcium channels from rat brain nerve terminals. Immunofluorescent confocal microscopy at the frog neuromuscular junction was consistent with the co-localization of syntaxin 1, SNAP-25, and calcium channels, all of which are predominantly expressed at active zones of the presynaptic plasma membrane facing post-synaptic folds rich in acetylcholine receptors. The interaction of proteins implicated in calcium-dependent exocytosis with presynaptic calcium channels may locate the sensor(s) that trigger vesicle fusion within a microdomain of calcium entry.  相似文献   

4.
《The Journal of cell biology》1989,109(6):3425-3433
Nerve endings of the posterior pituitary are densely populated by dense- core neurosecretory granules which are the storage sites for peptide neurohormones. In addition, they contain numerous clear microvesicles which are the same size as small synaptic vesicles of typical presynaptic nerve terminals. Several of the major proteins of small synaptic vesicles of presynaptic nerve terminals are present at high concentration in the posterior pituitary. We have now investigated the subcellular localization of such proteins. By immunogold electron microscopy carried out on bovine neurohypophysis we have found that three of these proteins, synapsin I, Protein III, and synaptophysin (protein p38) were concentrated on microvesicles but were not detectable in the membranes of neurosecretory granules. In addition, we have studied the distribution of the same proteins and of the synaptic vesicle protein p65 in subcellular fractions of bovine posterior pituitaries obtained by sucrose density centrifugation. We have found that the intrinsic membrane proteins synaptophysin and p65 had an identical distribution and were restricted to low density fractions of the gradient which contained numerous clear microvesicles with a size range the same as that of small synaptic vesicles. The peripheral membrane proteins synapsin I and Protein III exhibited a broader distribution extending into the denser part of the gradient. However, the amount of these proteins clearly declined in the fractions preceding the peak of neurosecretory granules. Our results suggest that microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of all other nerve terminals and argue against the hypothesis that such vesicles represent an endocytic byproduct of exocytosis of neurosecretory granules.  相似文献   

5.
Antigenic proteins of brain synaptic plasma membranes (SPM) and postsynaptic densities (PSD) were characterized using antisera raised against SPM. Immunostaining of brain sections showed that the antigens were restricted to synapses, and electron microscopy revealed staining at both presynaptic terminals and PSDs. In primary brain cell cultures the antisera were also neuron-specific but the antigens were distributed throughout the entire neuronal plasma membrane, suggesting that some restrictive influence present in whole tissue is absent when neurons are grown dispersed. The antigenic proteins with which these antisera react were identified using SDS gel immunoblots. SPM and PSD differed from one another in their characteristic antigenic proteins. Comparison with amido-black stained gel blots showed that in both cases most of these did not correspond to known abundant proteins of SPM or PSDs revealed by conventional biochemical techniques. None of the antigens revealed by the polyclonal antisera were detected by any of a large series of monoclonal antibodies against SPM.  相似文献   

6.
The subclavian glomera (aortic bodies) of young New Zealand white rabbits were studied with the light, fluorescence, and electron microscopes. Two cell types were identified: type I, granule-containing (chief) cells, and type II, agranular (sustentacular) cells. The type I cells possessed large nuclei, the normal complement of cytoplasmic organelles and numerous electron-opaque cytoplasmic granules. The type II cells were agranular with attenuated cytoplasmic processes which partially or completely ensheathed the type I cells. The glomera were well vascularized. Capillary endothelial cells contained numerous pinocytotic vesicles, but few fenestrae. Two profiles of nerve terminals were observed. One, apposing the type I cells, contained numerous electron-lucent vesicles, several dense-cored vesicles, mitochondria and possessed membrane specializations resembling those usually observed in synaptic zones. The other profile contained abundant mitochondria and a few electron-lucent and dense-cored vesicles. Structural specializations were not observed on the apposed membranes of these terminals or adjacent to type II cells. Fluorescence histochemistry revealed an intense yellow-green fluorescence in the glomera, which indicated the presence of biogenic amines, possibly primary catecholamines or an indolamine. The electron-opaque granules observed in the type I cells were believed to be the storage sites for these amines. The subclavian glomera were found to be morphologically similar to the carotid body which is a known chemoreceptor.  相似文献   

7.
《The Journal of cell biology》1983,96(5):1355-1373
Synapsin I (protein I) is a major neuron-specific endogenous substrate for cAMP-dependent and Ca/calmodulin-dependent protein kinases that is widely distributed in synapses of the central and peripheral nervous system (De Camilli, P., R. Cameron, and P. Greengard, 1983, J. Cell Biol. 96:1337-1354). We have now carried out a detailed analysis of the ultrastructural localization of synapsin I in the synapse. For this purpose we have developed a novel immunocytochemical technique that involves the labeling of isolated synaptosomes immobilized in a thin agarose gel. Special fixation conditions were designed to maximize accessibility of synapsin I to marker molecules. Immunoferritin and immunoperoxidase studies of this preparation indicated that synapsin I is localized in the presynaptic compartment and that it is present in close to 100% of all nerve endings. Immunoferritin labeling also indicated that, inside the nerve ending, synapsin I is specifically associated with the cytoplasmic surface of synaptic vesicles. In agreement with these immunoferritin results, the labeling produced by immunoperoxidase was compatible with a specific association of synapsin I with synaptic vesicle membranes. However, at variance with the very specific distribution of immunoferritin, immunoperoxidase reaction product was also found on other membranes of the terminals, presumably as a result of its diffusion over a short distance from the synaptic vesicles. Anti-synapsin I immunoperoxidase staining of tissue sections for electron microscopy produced an uneven labeling of terminals of the neuropile, in agreement with results of a previous study (Bloom, F. E., T. Ueda, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA. 76:5982-5986). A comparison with results obtained in isolated synapses indicates that the limited labeling of nerve endings in tissue sections results from limited and uneven penetration by marker molecules. The specific association of synapsin 1 with synaptic vesicle membranes in the great majority of nerve terminals suggests a prominent role for this phosphoprotein in the regulation of synaptic vesicle function.  相似文献   

8.
Mitochondrial hexokinase from small-intestinal mucosa and brain   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The submitochondrial localization of hexokinase activity in preparations of mitochondria from the small intestine of the guinea pig was studied by conventional methods. 2. Hexokinase activity in this tissue was predominantly associated with the outer mitochondrial membrane. 3. The inactivation of mitochondrial enzymes by trypsin in iso-osmotic and hypo-osmotic conditions was also used to determine the submitochondrial localization of hexokinase activity. 4. Hexokinase activity was found to be on the outside of the outer mitochondrial membrane. 5. It was shown that both type I and type II hexokinase activities are bound to the outside of the outer mitochondrial membrane. The types are present in the same ratio as that in which they occur in the cytosol of the cell. 6. Mitochondrial hexokinase from the small intestine did not show the latency phenomenon demonstrated by mitochondrial hexokinase from brain when subjected to a variety of treatments. However, hexokinase activity was solubilized from preparations of mitochondria from the small intestine by the same treatments as for mitochondrial hexokinase from brain. 7. The submitochondrial distribution of hexokinase activity in mitochondrial preparations from rat brain was determined by the trypsin inactivation method. 8. Hexokinase activity in preparations of mitochondria from rat brain was found on the outside of the outer membrane, between the mitochondrial membranes, and within the inner mitochondrial membrane. 9. Hexokinase from rat brain showed latency properties irrespective of its submitochondrial location.  相似文献   

9.
We are carrying out a study about the synaptic relations between identified synaptic profiles in the dorsal lateral geniculate nucleus (dLGN) of the rabbit. Here, the types of synaptic vesicle containing profiles of the dLGN are described. There are presynaptic large profiles containing round vesicles and pale mitochondria (RLP terminals) and small profiles that contain round vesicles and dark mitochondria (RSD terminals) which respectively arise from the retina and the visual cortex. Another type of presynaptic profile contains elliptical vesicles (F-boutons) which can be subdivided according to their cytoplasmic content. These F-boutons arise from dLGN interneurons. We have found different sized vesicles that have a dense core within RLP, and F terminals and a possible RSD terminal. The significance of the coexistance of pale and dense cored vesicles in the presynaptic profiles of the rabbit dLGN is discussed.  相似文献   

10.
As is known, regulated exocytosis of synaptic vesicles constitutes a primary means of communication between neurons, and it is subjected to substantial alterations in a number of brain pathologies. Recent investigations showed that vesicular transport events in neuroendocrine cells and presynaptic terminals are realized by a family of specialized membrane proteins of the vesicle (v-SNAREs) and another family located in the target cytoplasmic membrane (t-SNAREs). A variety of such proteins has already been described in different preparations; however, their precise localization and role in vesicular trafficking during functional changes in the cells remain ambiguous. In addition, new synaptic proteins appear to be involved in the vesicular cycle; the functions of these proteins remain unclear. The role of synaptic proteins in the course of cell excitation, in particular functions of core SNARE synaptic proteins (vesicular synaptobrevin/VAMPs and plasma membrane syntaxins/SNAP-25), as well as those of novel presynaptic proteins (Munc-13, Munc-18, CAPS proteins, and others), are discussed in this review. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 155–159, March–April, 2008.  相似文献   

11.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

12.
Astrocytes play a well-established role in brain metabolism, being a key element in the capture of energetic compounds from the circulation and in their delivery to active neurons. Their metabolic status is affected in many pathological situations, such as gliomas, which are the most common brain tumors. This proliferative dysfunction is associated with changes in gap junctional communication, a property strongly developed in normal astrocytes studied both in vitro and in vivo. Here, we summarize and discuss the findings that have lead to the identification of a link between gap junctions, glucose uptake, and proliferation. Indeed, the inhibition of gap junctional communication is associated with an increase in glucose uptake due to a rapid change in the localization of both GLUT-1 and type I hexokinase. This effect persists due to the up-regulation of GLUT-1 and type I hexokinase and to the induction of GLUT-3 and type II hexokinase. In addition, cyclins D1 and D3 have been found to act as sensors of the inhibition of gap junctions and have been proposed to play the role of mediators in the mitogenic effect observed. Conversely, in C6 glioma cells, characterized by a low level of intercellular communication, an increase in gap junctional communication reduces glucose uptake by releasing type I and type II hexokinases from the mitochondria and decreases the exacerbated rate of proliferation due to the up-regulation of the Cdk inhibitors p21 and p27. Identification of the molecular actors involved in these pathways should allow the determination of potential therapeutic targets that could lead to the testing of alternative strategies to prevent, or at least slow down, the proliferation of glioma cells.  相似文献   

13.
The synapsins (I, II, and III) comprise a family of peripheral membrane proteins that are involved in both regulation of neurotransmitter release and synaptogenesis. Synapsins are concentrated at presynaptic nerve terminals and are associated with the cytoplasmic surface of synaptic vesicles. Membrane-binding of synapsins involves interaction with both protein and lipid components of synaptic vesicles. Synapsin I binds rapidly and with high affinity to liposomes containing anionic lipids. The binding of bovine synapsin I to liposomes was studied using fluoresceinphosphatidyl-ethanolamine (FPE) to measure membrane electrostatic potential. Synapsin binding to liposomes caused a rapid increase in FPE fluorescence, indicating an increase in positive charge at the membrane surface. Synapsin I binding to monolayers resulted in a substantial increase in monolayer surface pressure. At higher initial surface pressures, the synapsin-induced increase in monolayer surface pressure is dependent on the presence of anionic lipids in the monolayer. Synapsin I also induced rapid aggregation of liposomes, but did not induce leakage of entrapped carboxyfluorescein, while other aggregation-inducing agents promoted extensive leakage. These results are in agreement with the presence of amphipathic stretches of amino acids in synapsin I that exhibit both electrostatic and hydrophobic interactions with membranes, and offer a molecular explanation for the high affinity binding of synapsin I to liposomes and for stabilization of membranes by synapsin I.  相似文献   

14.
本文应用X射线能谱分析结合电镜技术研究了钙离子在青蛙交感神经节神经元内的分布及其在茶碱作用下分布的变化.实验结果表明在组织样品的电子致密沉积物EDD中含有钙离子成分.在青蛙交感神经节突触后神经元中,包含钙离子的EDD存在于质膜、亚表面池及线粒体中;在突触前神经末梢中,突触小泡的膜上也可观察到EDD.在茶碱作用下,交感神经节神经元的质膜、线粒体中的EDD大大地减少;在亚表面池中则没有或很少观察到EDD;突触前末梢中的突触小泡明显地趋向聚集,在突触小泡之间的连接处频繁地出现EDD.本文根据实验结果讨论了茶碱可能促使钙离子从交感神经元的上述部位中释放出来,并认为质膜、亚表面池和线粒体是细胞内钙离子的贮存部位,而亚表面池可能是主要的贮存释放部位.突触前神经末梢内形态上的变化可能与神经递质释放的机理有关.  相似文献   

15.
We have made a monoclonal antibody which specifically recognizes smg p25A among many ras p21/ras p21-like GTP-binding proteins thus far purified from bovine brain membranes. By use of this antibody, we have investigated the localization and subcellular distribution of smg p25A in rat brain by light and electron microscopic immunocytochemistry and by immunoblotting. By light microscopic immunocytochemistry, specific immunoreactivity is widely distributed, most abundant in neuropil, weak in neuronal somata, and absent from white matter. By electron microscopic immunocytochemistry, intense labeling is demonstrated on most of the synapses and concentrated in the presynaptic area where synaptic vesicles are observed. Presynaptic plasma membranes are weakly labeled but mitochondria, postsynaptic plasma membranes, and postsynaptic densities are unlabeled. In subcellular fractionation analysis of cerebrum, about one-fifth of smg p25A is found in the soluble cytosol fraction and the rest is found in the particulate fraction. About half of the particulate-bound smg p25A is recovered in the P2 fraction containing synaptosomes, mitochondria, and myelin, among which a major portion of smg p25A is recovered in the synaptosomal fraction. In the synaptosomal fraction, smg p25A is concentrated about 8-fold in the fraction containing synaptic vesicles and about 3-fold in the fraction containing synaptic plasma membranes compared with the original homogenate. smg p25A is present at a low level in the fraction containing synaptosomal soluble substances but almost absent from the fractions containing intrasynaptosomal mitochondria or post-synaptic densities. These results suggest that smg p25A plays important roles in the regulation of synaptic functions such as exo-endocytotic recycling of synaptic vesicles during neurotransmitter release.  相似文献   

16.
The morphological features of pinched-off presynaptic nerve terminals (synaptosomes) from rat brain were examined with electron microscope techniques; in many experiments, an extracellular marked (horseradish peroxidase or colloidal thorium dioxide) was included in the incubation media. When incubated in physiological saline, most terminals appeared approximately spherical, and were filled with small (approximately 400- A diameter) "synaptic vesicles"; mitochondria were also present in many of the terminals. In a number of instances the region of synaptic contact, with adhering portions of the postsynaptic cell membrane and postsynaptic density, could be readily discerned. Approximately 20--30% of the terminals in our preparations exhibited clear evidence of damage, as indicated by diffuse distribution of extracellular markers in the cytoplasm; the markers appeared to be excluded from the intraterminal vesicles under these circumstances. The markers were excluded from the cytoplasm in approximately 70--80% of the terminals, which may imply that these terminals have intact plasma membranes. When the terminals were treated with depolarizing agents (veratridine or K- rich media), in the presence of Ca, many new, large (600--900-A diameter) vesicles and some coated vesicles and new vacuoles appeared. When the media contained an extracellular marker, the newly formed structures frequently were labeled with the marker. If the veratridine- depolarized terminals were subsequently treated with tetrodotoxin (to repolarize the terminals) and allowed to "recover" for 60--90 min, most of the large marker-containing vesicles disappeared, and numerous small (approximately 400-A diameter) marker-containing vesicles appeared. These observations are consistent with the idea that pinched-off presynaptic terminals contain all of the machinery necessary for vesicular exocytosis and for the retrieval and recycling of synaptic vesicle membrane. The vesicle membrane appears to be retrieval primarily in the form of large diameter vesicles which are subsequently reprocessed to form new "typical" small-diameter synaptic vesicles.  相似文献   

17.
During axonal transport, membranes travel down axons at a rapid rate, whereas the cytoskeletal elements travel in either of two slow components, SCa (with tubulin and neurofilament protein) and SCb (with actin). Clathrin, the highly ordered, structural coat protein of coated vesicles, has recently been shown to be able to interact in vitro with cytoskeletal proteins in addition to membranes. The present study examines whether clathrin travels preferentially with the membrane elements or the cytoskeletal elements when it is axonally transported. Guinea pig visual system was labeled with tritiated amino acids. Radioactive SDS-polyacrylamide gel electrophoresis profiles from the major components of transport were coelectrophoresed with clathrin. Only SCb had a band comigrating with clathrin. In addition, radioactive clathrin was purified from guinea pig brain containing only radioactive SCb polypeptides. Kinetic analysis of the putative clathrin band in SCb revealed that it travels entirely within the SCb wave. Thus we conclude that clathrin travels preferentially with the cytoskeletal proteins making up SCb, rather than with the membranes and membrane-associated proteins in the fast component.  相似文献   

18.
How does calcium trigger neurotransmitter release?   总被引:21,自引:0,他引:21  
Recent work has established that different geometric arrangements of calcium channels are found at different presynaptic terminals, leading to a wide spectrum of calcium signals for triggering neurotransmitter release. These calcium signals are apparently transduced by synaptotagmins - calcium-binding proteins found in synaptic vesicles. New biochemical results indicate that all synaptotagmins undergo calcium-dependent interactions with membrane lipids and a number of other presynaptic proteins, but which of these interactions is responsible for calcium-triggered transmitter release remains unclear.  相似文献   

19.
Two proteins of the presynaptic plasma membrane, syntaxin and SNAP 25, and VAMP/synaptobrevin, a synaptic vesicle membrane protein, form stable protein complexes which are involved in the docking and fusion of synaptic vesicles at the mammalian brain presynaptic membrane. Similar protein complexes were revealed in an homogeneous population of cholinergic synaptosomes purified from Torpedo electric organ by combining velocity sedimentation and immunoprecipitation experiments. After CHAPS solubilization, virtually all the nerve terminal syntaxin was found in the form of large 16 S complexes, in association with 65% of SNAP 25 and 15% of VAMP. Upon Triton X100 solubilization, syntaxin was still recovered in association with SNAP 25 and VAMP but in smaller 8 S complexes. A small (2–5%) percentage of the nerve terminal 15 kDa proteolipid subunit of the v-H+ ATPase and of mediatophore was copurified with syntaxin, using two different antisyntaxin monoclonal antibodies. The use of an homogeneous population of peripheral cholinergic nerve terminals allowed us to extend results on the composition of the brain presynaptic protein complexes to the Torpedo electric organ synapse, a model of the rapid neuromuscular synapses. Copyright © 1996 Elsevier Science Ltd  相似文献   

20.
The release of neurotransmitter from nerve terminals occurs at a specialized region of the presynaptic plasma membrane called the active zone. A dense matrix of proteins associated with the active zone, called the presynaptic web, is thought to play a fundamental role in defining these neurotransmitter release sites. In this issue of Neuron, Phillips et al. have identified conditions for the biochemical purification of the presynaptic web and show that the web is comprised of proteins involved in the docking, fusion, and recycling of synaptic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号