首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.  相似文献   

2.
The volatile profiles from flowers of Nicotiana sylvestris and N. suaveolens were investigated by means of dynamic headspace sampling and capillary gas chromatography. Under conditions of light/dark entrainment both species emitted phenylpropanoid-derived volatiles (e.g. benzyl alcohol, methyl benzoate) with maximum emission occurring during the dark period. Emission of these compounds was demonstrated to be circadian by continuance of rhythmicity under conditions of constant light and subsequent re-entrainment to a new light/dark cycle. In contrast, emission of the sesquiterpene hydrocarbon, caryophyllene, from N. sylvestris followed no apparent pattern. The emission of monoterpene hydrocarbons from flowers of N. suaveolens showed diurnal differences only under conditions of light/dark entrainment.  相似文献   

3.
Nicotiana species of the section Alatae emit a characteristic floral scent comprising the? cineole cassette’ monoterpenes 1,8-cineole, limonene, myrcene, β-pinene, α-pinene, sabinene and α-terpineol. All previously isolated ‘cineole cassette’-monoterpene synthase genes are multi product enzymes that synthesize the seven compounds of the ‘cineole cassette’. Interestingly, so far this ‘alatoid’ trait was only shared with the eponymous species Nicotiana suaveolens of the sister section Suaveolentes. To determine the origin of the ‘cineole cassette’ monoterpene phenotype other potential parent species of section Noctiflorae or Petunoides as well as of the distantly related section Trigonophyllae were analysed. A monoterpene synthase producing the set of ‘cineole cassette’ compounds was isolated from N. noctiflorae. N. obtusifolia emitted solely 1,8-cineole and no monoterpenes were found in floral scents of N. petunoides and N. palmeri. Interestingly, the phylogenetic analysis clustered the new gene of N. noctiflora closely to the terpineol synthase genes of e.g. N. alata rather than to cineole synthase genes of e.g. N. forgetiana.  相似文献   

4.
We analyzed floral volatiles from eight tobacco species (Nicotiana; Solanaceae) including newly discovered Brazilian taxa (Nicotiana mutabilis and "Rastroensis") in section Alatae. Eighty-four compounds were found, including mono- and sesquiterpenoids, nitrogenous compounds, benzenoid and aliphatic alcohols, aldehydes and esters. Floral scent from recent accessions of Nicotiana alata, Nicotiana bonariensis and Nicotiana langsdorffii differed from previously published data, suggesting intraspecific variation in scent composition at the level of biosynthetic class. Newly discovered taxa in Alatae, like their relatives, emit large amounts of 1,8-cineole and smaller amounts of monoterpenes on a nocturnal rhythm, constituting a chemical synapomorphy for this lineage. Fragrance data from three species of Nicotiana sect. Suaveolentes, the sister group of Alatae, (two Australian species: N. cavicola, N. ingulba; one African species: N. africana), were compared to previously reported data from their close relative, N. suaveolens. Like N. suaveolens, N. cavicola and N. ingulba emit fragrances dominated by benzenoids and phenylpropanoids, whereas the flowers of N. africana lacked a distinct floral scent and instead emitted only small amounts of an aliphatic methyl ester from foliage. Interestingly, this ester also is emitted from foliage of N. longiflora and N. plumbaginifolia (both in section Alatae s.l.), which share a common ancestor with N. africana. This result, combined with the synapomorphic pattern of 1,8 cineole emission in Alatae s.s., suggests that phylogenetic signal explains a major component of fragrance composition among tobacco species in sections Alatae and Suaveolentes. At the intraspecific level, interpopulational scent variation is widespread in sect. Alatae, and may reflect edaphic specialization, introgression, local pollinator shifts, genetic drift or artificial selection in cultivation. Further studies with genetically and geographically well-defined populations are needed to distinguish between these possibilities.  相似文献   

5.
Flower-specific benzenoid carboxyl methyltransferases from Stephanotis floribunda and Nicotiana suaveolens were biochemically and structurally characterized. The floral scents of both these species contain higher levels of methyl benzoate and lower levels of methyl salicylate. The S. floribunda enzyme has a 12-fold lower K(m) value for salicylic acid (SA) than for benzoic acid (BA), and results of in silico modeling of the active site of the S. floribunda enzyme, based on the crystal structure of Clarkia breweri salicylic acid methyltransferase (SAMT), are consistent with this functional observation. The enzyme was therefore designated SAMT. The internal concentration of BA in S. floribunda flowers is three orders of magnitude higher than the SA concentration, providing a rationale for the observation that these flowers synthesize and emit more methyl benzoate than methyl salicylate. The N. suaveolens enzyme has similar K(m) values for BA and SA, and the in silico modeling results are again consistent with this in vitro observation. This enzyme was therefore designated BSMT. However, the internal concentration of BA in N. suaveolens petals was also three orders of magnitude higher than the concentration of SA. Both S. floribunda SAMT and N. suaveolens BSMT are able to methylate a range of other benzenoid-related compounds and, in the case of S. floribunda SAMT, also several cinnamic acid derivatives, an observation that is consistent with the larger active site cavity of each of these two enzymes compared to the SAMT from C. breweri, as shown by the models. Broad substrate specificity may indicate recent evolution or an adaptation to changing substrate availability.  相似文献   

6.
GC-MS analyses of nocturnal and diurnal floral volatiles from nine tobacco species (Nicotiana; Solanaceae) resulted in the identification of 125 volatiles, including mono- and sesquiterpenoids, benzenoid and aliphatic alcohols, aldehydes and esters. Fragrance chemistry was species-specific during nocturnal emissions, whereas odors emitted diurnally were less distinct. All species emitted greater amounts of fragrance at night, regardless of pollinator affinity. However, these species differed markedly in odor complexity and emission rates, even among close relatives. Species-specific differences in emission rates per flower and per unit fresh or dry flower mass were significantly correlated; fragrance differences between species were not greatly affected by different forms of standardization. Flowers of hawkmoth-pollinated species emitted nitrogenous aldoximes and benzenoid esters on nocturnal rhythms. Four Nicotiana species in section Alatae sensu strictu have flowers that emit large amounts of 1,8 cineole, with smaller amounts of monoterpene hydrocarbons and alpha-terpineol on a nocturnal rhythm. This pattern suggests the activity of a single biosynthetic enzyme (1,8 cineole synthase) with major and minor products; however, several terpene synthase enzymes could contribute to total monoterpene emissions. Our analyses, combined with other studies of tobacco volatiles, suggest that phenotypic fragrance variation in Nicotiana is shaped by pollinator- and herbivore-mediated selection, biosynthetic pathway dynamics and shared evolutionary history.  相似文献   

7.
The flowers of many plants emit volatile compounds as a means of attracting pollinators. We have previously shown that the strong, sweet fragrance of Clarkia breweri (Onagraceae), an annual plant native to California, consists of approximately 8 to 12 volatile compounds[mdash]three monoterpenes and nine benzoate derivatives (R.A. Raguso and E. Pichersky [1994] Plant Syst Evol [in press]). Here we report that the monoterpene alcohol linalool is synthesized and emitted mostly by petals but to a lesser extent also by the pistil and stamens. Two linalool oxides are produced and emitted almost exclusively by the pistil. These three monoterpenes are first discernible in mature unopened buds, and their tissue levels are highest during the first 2 to 3 d after anthesis. Levels of emission by the different floral parts throughout the life span of the flower were correlated with levels of these monoterpenes in the respective tissues, suggesting that these monoterpenes are emitted soon after their synthesis. Activity of linalool synthase, an enzyme that converts the ubiquitous C10 isoprenoid intermediate geranyl pyrophosphate to linalool, was highest in petals, the organ that emits most of the linalool. However, linalool synthase activity on a fresh weight basis was highest in stigma and style (i.e. the pistil). Most of the linalool produced in the pistil is apparently converted into linalool oxides. Lower levels (0.1%) of monoterpene emission and linalool synthase activity are found in the stigma of Clarkia concinna, a nonscented relative of C. breweri, suggesting that monoterpenes may have other functions in the flower in addition to attracting pollinators.  相似文献   

8.
9.
10.
Clarkia breweri (Onagraceae) is the only species known in its genus to produce strong floral fragrance and to be pollinated by moths. We used gas chromatography-mass spectrometry (GC-MS) to identify 12 abundant compounds in the floral headspace from two inbred lines ofC. breweri. These volatiles are derived from two biochemical pathways, one producing acyclic monoterpenes and their oxides, the other leading from phenylalanine to benzoate and its derivatives. Linalool and linalool oxide (pyran form) were the most abundant monoterpenoids, while linalool oxide (furan form) was present at lower concentrations. Of the aromatic compounds detected, benzyl acetate was most abundant, whereas benzyl benzoate, eugenol, methyl salicylate, and vanillin were present as minor constituents in all floral samples. The two inbredC. breweri lines differed for the presence of the additional benzenoid compounds isoeugenol, methyleugenol, methylisoeugenol, and veratraldehyde. We also analyzed floral headspace fromC. concinna, the likely progenitor ofC. breweri, whose flowers are odorless to the human nose. Ten volatiles (mostly terpenoids) were detected at low concentrations, but only when headspace was collected from 20 or more flowers at a time. Trans--ocimene was the most abundant floral compound identified from this species. Our data are consistent with the hypothesized recent evolution of floral scent production and moth pollination inC. breweri.  相似文献   

11.
Dependence of monoterpenoid emission and fractional composition on stomatal conductance (G(V)) was studied in Mediterranean conifer Pinus pinea, which primarily emits limonene and trans-beta-ocimene but also large fractions of oxygenated monoterpenoids linalool and 1,8-cineole. Strong decreases in G(V) attributable to diurnal water stress were accompanied by a significant reduction in total monoterpenoid emission rate in midday. However, various monoterpenoids responded differently to the reduction in G(V), with the emission rates of limonene and trans-beta-ocimene being unaffected but those of linalool and 1,8-cineole closely following diurnal variability in G(V). A dynamic emission model indicated that stomatal sensitivity of emissions was associated with monoterpenoid Henry's law constant (H, gas/liquid phase partition coefficient). Monoterpenoids with a large H such as trans-beta-ocimene sustain higher intercellular partial pressure for a certain liquid phase concentration, and stomatal closure is balanced by a nearly immediate increase in monoterpene diffusion gradient from intercellular air-space to ambient air. The partial pressure rises also in compounds with a low H, but more than 1,000-fold higher liquid phase concentrations of linalool and 1,8-cineole are necessary to increase intercellular partial pressure high enough to balance stomatal closure. The system response is accordingly slower, and the emission rates may be transiently suppressed by low G(V). Simulations further suggested that linalool and 1,8-cineole synthesis rates also decreased with decreasing G(V), possibly as the result of selective inhibition of various monoterpene synthases by stomata. We conclude that physicochemical characteristics of volatiles not only affect total emission but also alter the fractional composition of emitted monoterpenoids.  相似文献   

12.
作为桉叶油的主要成分,桉叶素是具有多种生物活性的单萜化合物,被广泛应用于药品、食品及化妆品等领域。桉叶油主要从桉树叶提取,该过程耗费大量人力及自然资源,且容易污染环境。近年来,随着微生物代谢工程与合成生物学的快速发展,加上越来越多萜类生物合成途径得到解析,为桉叶素的绿色生产提供了新的途径。对桉叶素的生物合成途径、桉叶素合酶的结构与功能及近年来桉叶素的微生物合成进行了综述,并对利用微生物代谢工程合成桉叶素等单萜化合物的瓶颈问题及解决方案进行了探讨和归纳,为构建高产桉叶素等单萜微生物工程菌株提供参考。  相似文献   

13.
Most modern cut-flower cultivars, including those of carnation(Dianthus caryophyllus), lack distinct fragrance.Carnationcv. Eilat flowers produce and emit various fragrance compounds, includingbenzoic acid derivatives and sesquiterpenes, but not monoterpenes. Based onGC-MS analysis, benzoic acid, benzyl benzoate, phenylethyl benzoate, methylbenzoate, cis-3-hexenyl benzoate and -caryophylleneare the major fragrance compounds, representing ca. 60% of the total volatilesgenerated by these flowers. The level of these compounds increases dramaticallyduring petal development. To evaluate the possibility of producing monoterpenesin carnation cv. Eilat, we generated transgenic plants expressing the linaloolsynthase gene from Clarkia breweri under the regulation ofthe CaMV 35S constitutive promoter. The product of this gene catalyzes theproduction of the monoterpene linalool from geranyl diphosphate. HeadspaceGC-MSanalysis revealed that leaves and flowers of transgenic, but not controlplants,emit linalool and its derivatives, cis- andtrans-linalool oxide. GC-MS analysis of petal extractrevealed the accumulation of trans-linalool oxide but notlinalool. The emission of linalool by the transgenic flowers did not lead todetectable changes in flower scent for human olfaction.  相似文献   

14.
15.
Emission rates of monoterpenes released by apple (Malus domestica Borkh) and cherry (Prunus avium L.) were estimated at different phenological stages. These measurements employed a dynamic flow-through Teflon chamber, sample collection onto cartridges filled with graphitized carbon and thermal desorption gas chromatography-mass spectrometry (GC-MS) for identification and quantification of the emitted volatiles. At full bloom the release of monoterpene hydrocarbons from cherry flowers was 1213 ng g(-1) dry weight (DW) h(-1), exceeding by approximately three-fold the emission rate of apple flowers (366 ng g(-1) DW h(-1)). Observed seasonal variations in biogenic volatile organic compound (VOC) emissions ranged over several order of magnitudes. At fruit-set and ripening stages, in fact, the hydrocarbon emission dramatically decreased reaching the lowest values at harvest time when leaves were fully mature (3-9 ng g(-1) DW h(-1)). Wide diversity in the composition of compounds from the species studied was also recorded. At blooming, linalool contributed significantly to the monoterpene emission from apple (94% of the emitted carbon) while alpha-pinene and camphene represented on average more than 60% of the total emitted volatiles from cherry flowers. Among the monoterpenes identified in flowers, alpha-pinene, camphene and limonene were also found in the foliage emission of both species. Fruit trees are relevant monoterpene emitters only at blooming and thus for a short period of the vegetative cycle. When leaves are fully developed, the carbon loss due to monoterpene emissions related to the photosynthetically carbon gain is negligible.  相似文献   

16.
The heterocyclic monoterpene 1,8-cineole is one of the major components of the volatile oil produced by sage (Salvia officinalis), and soluble enzyme extracts prepared from young sage leaves catalyzed the anaerobic conversion of the acyclic precursor neryl pyrophosphate to 1,8-cineole. This enzymatic activity was partially purified by a combination of ammonium sulfate precipitation and chromatography on hydroxylapatite, and the bulk of the competing activities, including phosphatases, were removed from the preparation. Cineole synthetase activity had a pH optimum at 6.1. The rate of 1,8-cineole formation was linear up to 1 h, and up to a protein concentration of 450 μg/ml. A divalent cation was required for catalysis, and maximum activity was obtained with MnCl2 (1 mm). ZnCl2 was nearly as effective as MnCl2, and MgCl2 could substitute for MnCl2 only at tenfold higher concentrations. The apparent Km and V of the enzyme were 10?5m and 5.6 nmol/h-mg-ml, respectively. Inhibition of activity was observed at neryl pyrophosphate concentrations above 2 × 10?4m. Nerol, neryl phosphate, 6,7-dihydroneryl pyrophosphate, citronellyl pyrophosphate, and 3,7-dimethyloctyl pyrophosphate were inactive as substrates for 1,8-cineole biosynthesis, indicating that the pyrophosphate and both double bonds of neryl pyrophosphate were required for catalysis. Geranyl pyrophosphate and linaloyl pyrophosphate were converted to 1,8-cineole at only 9 and 15%, respectively, of the rate of neryl pyrophosphate. Thus, the enzyme was highly specific for neryl pyrophosphate. α-Terpineol and its phosphorylated derivatives were not converted to 1,8-cineole, and this observation, coupled with the resolution of cineole synthetase activity from α-terpineol synthetase activity, proved conclusively that α-terpineol was not an intermediate in 1,8-cineole biosynthesis. p-Hydroxymercuribenzoate strongly inhibited the conversion of neryl pyrophosphate to 1,8-cineole (90% inhibition at 4 × 10?5m); however, other thiol-directed reagents such as N-ethylmaleimide were much less effective. The enzyme was insensitive to NaF and to several other metabolic inhibitors. This is the first report on the properties of cineole synthetase, a novel enzyme which catalyzes both a carbocyclization and a heterocyclization.  相似文献   

17.
18.
This study was designed to examine the chemical compositions of scent volatiles and antioxidant activities of Polianthes tuberosa L. flower extract in six different solvents. The main constituents of the volatile components were benzyl benzoate, methyl 2-amino benzoate, methyl isoeugenol, isoeugenol, benzyl salicylate, methyl salicylate, geraniol and 1,8-cineole. Total phenolic content of floral extracts in water, methanol, ethanol, ethyl acetate, hexane and dichloromethane were found to be 0.094, 0.18, 0.14, 0.007, 0.004 and 0.110 mg gallic acid equivalent/mg fresh weight, respectively. The methanol soluble fraction showed highest values of antioxidant activity through DPPH and ABTS assays. Methanol extract effectively inhibits the non site-specific DNA strand breakage caused by Fenton’s reagents. Dichloromethane and aqueous fractions also exhibited high antioxidant capacities. Aqueous extract showed highest value in FRAP assay.  相似文献   

19.
Foliar oils, particularly monoterpenes, can influence the susceptibility of plants to herbivory. In plants, including eucalypts, monoterpenes are often associated with plant defence. A recent analysis revealed an increase in foliar oil content with increasing latitudinal endemism, and we tested this pattern using three eucalypt taxa comprising a latitudinal replacement cline. We also examined the relative concentrations of two monoterpenes (α‐pinene and 1,8‐cineole), for which meta‐analyses also showed latitudinal variation, using hybrids of these three taxa with Corymbia torelliana. These, and pure C. torelliana, were then assessed in common‐garden field plots for the abundance and distribution of herbivory by four distinct herbivore taxa. Differing feeding strategies among these herbivores allowed us to test hypotheses regarding heritability of susceptibility and relationships to α‐pinene and 1,8‐cineole. We found no support for an increase in foliar oil content with increasing latitude, nor did our analysis support predictions for consistent variation in α‐pinene and 1,8‐cineole contents with latitude. However, herbivore species showed differential responses to different taxa and monoterpene contents. For example, eriophyid mites, the most monophagous of our censused herbivores, avoided the pure species, but fed on hybrid taxa, supporting hypotheses on hybrid susceptibility. The most polyphagous herbivore (leaf blister sawfly Phylacteophaga froggatti) showed no evidence of response to plant secondary metabolites, while the distribution and abundance patterns of Paropsis atomaria showed some relationship to monoterpene yields.  相似文献   

20.
Using a series of efflux mutants of Pseudomonas aeruginosa, the MexAB-OprM pump was identified as contributing to this organism's tolerance to the antimicrobial agent tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. These data show that a multidrug efflux system of P. aeruginosa can extrude monoterpenes and related alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号