首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Use of the reductant dithiothreitol (DTT) as a substrate for measuring vitamin K 2,3-epoxide reductase (VKOR) activity in vitro has been reported to be problematic because it enables side reactions involving the vitamin K1 2,3-epoxide (K1>O) substrate. Here we characterize specific problems when using DTT and show that tris(3-hydroxypropyl)phosphine (THPP) is a reliable alternative to DTT for in vitro assessment of VKOR enzymatic activity. In addition, the pH buffering compound imidazole was found to be problematic in enhancing DTT-dependent non-enzymatic side reactions. Using THPP and phosphate-based pH buffering, we measured apparent Michaelis–Menten constants of 1.20 μM for K1>O and 260 μM for the active neutral form of THPP. The Km value for K1>O is in agreement with the value that we previously obtained using DTT (1.24 μM). Using THPP, we successfully eliminated non-enzymatic production of 3-hydroxyvitamin K1 and its previously reported base-catalyzed conversion to K1, both of which were shown to occur when DTT and imidazole are used as the reductant and pH buffer, respectively, in the in vitro VKOR assay. Accordingly, substitution of THPP for DTT in the in vitro VKOR assay will ensure more accurate enzymatic measurements and assessment of warfarin and other 4-hydroxycoumarin inhibition constants.  相似文献   

2.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   

3.
Scattering coumarin derivative rodenticides in broad areas have caused primary- and secondary-poisoning incidents in non-target wild birds. In this study, we compared factors determining warfarin sensitivity between bird species and rats based on vitamin K 2,3-epoxide reductase (VKOR) kinetics, VKOR inhibition by warfarin and warfarin metabolism assays. In VKOR characterization, chickens and ostriches showed significantly lower enzymatic efficiencies than rats (one-sixth and one-third, respectively), suggesting bird species depend more on a non-VKOR vitamin K source. On the other hand, the inhibition constants (Ki) of VKOR for warfarin were significantly different between chickens and ostriches (11.3 ± 2.5 μM and 0.64 ± 0.39 μM, respectively). Interestingly, the ostrich Ki was similar to the values for rats (0.28 ± 0.09 μM). The Ki results reveal a surprising possibility that VKOR in some bird species are easily inhibited by warfarin. Warfarin metabolism assays also showed a large inter-species difference in bird species. Chickens and ostriches showed higher metabolic activity than that of rats, while mallards and owls showed only a slight ability to metabolize warfarin. In this study, we clarified the wide inter-species difference that exists among birds in xenobiotic metabolism and sensitivity to a rodenticide.  相似文献   

4.

Background

The p38α MAP kinase pathway is involved in inflammation, cell differentiation, growth, apoptosis and production of pro-inflammatory cytokines TNF-α and IL-1β. The overproduction of these cytokines plays an important role in cancer. The aim of this work was to design a peptide inhibitor on the basis of structural information of the active site of p38α.

Methods

A tetrapeptide, VWCS as p38α inhibitor was designed on the basis of structural information of the ATP binding site by molecular modeling. The inhibition study of peptide with p38α was performed by ELISA, binding study by Surface Plasmon Resonance and anti-proliferative assays by MTT and flow cytometry.

Results

The percentage inhibition of designed VWCS against pure p38α protein and serum of HNSCC patients was 70.30 and 71.5%, respectively. The biochemical assay demonstrated the KD and IC50 of the selective peptide as 7.22 × 10− 9 M and 20.08 nM, respectively. The VWCS as inhibitor significantly reduced viability of oral cancer KB cell line with an IC50 value of 10 μM and induced apoptosis by activating Caspase 3 and 7.

Conclusions

VWCS efficiently interacted at the ATP binding pocket of p38α with high potency and can be used as a potent inhibitor in case of HNSCC.

General significance

VWCS can act as an anticancer agent as it potentially inhibits the cell growth and induces apoptosis in oral cancer cell-line in a dose as well as time dependent manner. Hence, p38α MAP kinase inhibitor can be a potential therapeutic agent for human oral cancer.  相似文献   

5.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

6.
A warfarin‐resistant strain and a warfarin‐susceptible strain of wild rats (Rattus norvegicus) maintained in enclosures of the National Veterinary School of Lyon (France) were studied to determine the mechanism of the resistance to anticoagulant rodenticides. A low vitamin K epoxide reductase (VKOR) activity has been reported for many resistant rat strains. As recently suggested, mutations in the vitamin K epoxide reductase subunit 1 (VKORC1) gene are the genetic basis of anticoagulant resistance in wild populations of rats from various locations in Europe. Here we report, for our strain, one of the seven described mutations (Tyr139Phe) for VKORC1 in rats. In addition, a low expression of mRNA encoding VKORC1 gene is observed in resistant rats, which could explain their low VKOR activity. We calculated kinetic parameters of VKOR in the warfarin‐resistant and warfarin‐susceptible rats. The Vmax and the Km of the VKOR obtained in resistant rats were lowered by 57 and 77%, respectively, compared to those obtained in susceptible rats. As a consequence, the enzymatic efficiency (Vm/Km) of the VKOR was similar between resistant and susceptible rats. This result could be a good explanation to the observation that no clinical signs of vitamin K deficiency was observed in the warfarin‐resistant strain, while a low VKOR activity was found. VKOR activity in warfarin‐resistant rats was poorly inhibited by warfarin (Ki for warfarin is 29 μM and 0.72 μM for resistant and susceptible rats, respectively). © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:379‐385, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20104  相似文献   

7.

Background

Mevalonate pathway is an important cellular metabolic pathway present in all higher eukaryotes and many bacteria. Four enzymes in mevalonate pathway, including MVK, PMK, MDD, and FPPS, play important regulatory roles in cholesterol biosynthesis and cell proliferation.

Methods

The following methods were used: cloning, expression and purification of enzymes in mevalonate pathway, organic syntheses of multifunctional enzyme inhibitors, measurement of their IC50 values for above four enzymes, kinetic studies of enzyme inhibitions, molecular modeling studies, cell viability tests, and fluorescence microscopy.

Results and conclusions

We report our multi-target-directed design, syntheses, and characterization of two blue fluorescent bisphosphonate derivatives compounds 15 and 16 as multifunctional enzyme inhibitors in mevalonate pathway. These two compounds had good inhibition to all these four enzymes with their IC50 values at nanomolar to micromolar range. Kinetic and molecular modeling studies showed that these two compounds could bind to the active sites of all these four enzymes. The fluorescence microscopy indicated that these two compounds could easily get into cancer cells.

General significance

Multifunctional enzyme inhibitors are generally more effective than single enzyme inhibitors, with fewer side effects. Our results showed that these multifunctional inhibitors could become lead compounds for further development for the treatment of soft-tissue tumors and hypercholesteremia.  相似文献   

8.

Background

Dysregulation of apoptotic cell death is observed in a large number of pathological conditions. As caspases are central enzymes in the regulation of apoptosis, a large number of procaspase-activating compounds (PAC-1 derivatives) and inhibitors (isatin derivatives) have been developed. Matrix metalloproteinases (MMPs) have been shown to have a dual role in apoptosis. Hence compounds that either activate or inhibit caspases should ideally not affect MMPs. As many PAC-1 derivatives contain a zinc chelating ortho-hydroxy N-acyl hydrazone moiety and isatin derivatives has two carbonyl groups on the indole core, it was of interest to determine to which extent these compounds can inhibit MMPs.

Methods

Eight PAC-1 and five isatin derivatives were docked into MMP-9 and MMP-14. The same compounds were synthesized, characterized, purified and tested as inhibitors of MMP-9 and MMP-14, using fluorescence quenched peptide and biological substrates. Some of the compounds were also tested for fluorescence quenching.

Results

Molecular docking suggested that the different compounds can bind to the MMP active sites. However, kinetic studies showed that neither of these compounds was a strong MMP inhibitor. IC50 values over 100 μM were obtained after the enzyme activities were corrected for quenching. These IC50 values are far above the concentrations needed to activate or inhibit the caspases.

Conclusion

The use of PAC-1 and isatin derivatives against caspases should have little or no effect on the activity of MMPs.

General significance

Activators and inhibitors of caspases are important potential therapeutic agents for several diseases such as cancer, diabetes and neurodegenerative disorders.  相似文献   

9.

Background

Aggregation of amyloid-beta (Aβ) has been proposed as the main cause of Alzheimer's disease (AD). Vitamin K deficiency has been linked to the pathogenesis of AD. Therefore, 15 synthesized vitamin K3 (VK3) analogues were studied for their anti-amyloidogenic activity.

Methods

Biological and spectroscopic assays were used to characterize the effect of VK3 analogues on amyloidogenic properties of Aβ, such as aggregation, free radical formation, and cell viability. Molecular dynamics simulation was used to calculate the binding affinity and mode of VK3 analogue binding to Aβ.

Results

Both numerical and experimental results showed that several VK3 analogues, including VK3-6, VK3-8, VK3-9, VK3-10, and VK3-224 could effectively inhibit Aβ aggregation and conformational conversion. The calculated inhibition constants were in the μM range for VK3-10, VK3-6, and VK3-9 which was similar to the IC50 of curcumin. Cell viability assays indicated that VK3-9 could effectively reduce free radicals and had a protective effect on cytotoxicity induced by Aβ.

Conclusions

The results clearly demonstrated that VK3 analogues could effectively inhibit Aβ aggregation and protect cells against Aβ induced toxicity. Modified VK3 analogues can possibly be developed as effective anti-amyloidogenic drugs for the treatment of AD.

General significance

VK3 analogues effectively inhibit Aβ aggregation and are highly potent as anti-amyloidogenic drugs for therapeutic treatment of AD.  相似文献   

10.

Background

Viroids are the smallest pathogens known to date. They infect plants and cause considerable economic losses. The members of the Avsunviroidae family are known for their capability to form hammerhead ribozymes (HHR) that catalyze self-cleavage during their rolling circle replication.

Methods

In vitro inhibition assays, based on the self-cleavage kinetics of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid (CChMVd-HHR) were performed in the presence of various putative inhibitors.

Results

Aminated compounds appear to be inhibitors of the self-cleavage activity of the CChMVd HHR. Surprisingly the spermine, a known activator of the autocatalytic activity of another hammerhead ribozyme in the presence or absence of divalent cations, is a potent inhibitor of the CChMVd-HHR with Ki of 17 ± 5 μM. Ruthenium hexamine and TMPyP4 are also efficient inhibitors with Ki of 32 ± 5 μM and IC50 of 177 ± 5 nM, respectively.

Conclusions

This study shows that polyamines are inhibitors of the CChMVd-HHR self-cleavage activity, with an efficiency that increases with the number of their amino groups.

General significance

This fundamental investigation is of interest in understanding the catalytic activity of HHR as it is now known that HHR are present in the three domains of life including in the human genome. In addition these results emphasize again the remarkable plasticity and adaptability of ribozymes, a property which might have played a role in the early developments of life and must be also of significance nowadays for the multiple functions played by non-coding RNAs.  相似文献   

11.
12.
13.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   

14.

Aims

This study aims to investigate the effect and the mechanisms of notoginsenoside Ft1, a natural compound exclusively found in P. notoginseng, on the proliferation and apoptosis of human neuroblastoma SH-SY5Y cells.

Main methods

CCK-8 assay was used to assess the cell proliferation. Flow cytometry was performed to measure the cell cycle distribution and cell apoptosis. Hoechst 33258 staining was conducted to confirm the morphological changes of apoptotic cells. Protein expression was detected by western blot analysis and caspase 3 activity was measured by colorimetric assay kit.

Key findings

Among the saponins examined, Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45 μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis, which was confirmed by Hoechst 33258 staining. Further studies demonstrated that Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK. However, the phosphorylation of Jak2 and p85 PI3K was reduced by Ft1. Inhibitors of p38 MAPK and ERK1/2 but not JNK abrogated the up-regulated protein expressions of cleaved caspase 3, p21 and down-regulated protein expression of Bcl-2 as well as elevated caspase 3 activity induced by Ft1.

Significance

Ft1 arrested the proliferation and elicited the apoptosis of SH-SY5Y cells possibly via p38 MAPK and ERK1/2 pathways, which indicates the potential therapeutic effect of it on human neuroblastoma.  相似文献   

15.

Background

Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

Methods

Glucosamine binding to the enzyme was assessed spectrofluorometrically and the kinetics of inhibition of PrAO were determined spectrophotometrically through the use of direct or coupled assays, in the presence of different substrates.

Results

Glucosamine is not a substrate for PrAO, but acts as a time-dependent inhibitor of PrAO activity, displaying mixed inhibition kinetics. The observed inhibition and binding were augmented in the presence of H2O2.

Conclusions

Significant in vitro effects on PrAO require glucosamine in the millimolar concentration range and it is not clear at this stage whether a low but persistent level of PrAO inhibition might contribute to the anti-arthritic response.

General significance

This work was aimed at characterizing the interactions of PrAO/VAP-1 with glucosamine, a widely used “over-the-counter” supplement for the treatment of osteoarthritis.  相似文献   

16.

Background

Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported.

Methods

We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC–MS/MS) and proteomic approaches.

Results

Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO molecule caused the highest inhibition of activity (51% at 5 mM SIN-1), with 5 mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite.

Conclusion

These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function.

General significance

This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.  相似文献   

17.

Background

Extracellular matrix (ECM) components and intracellular pH (pHi) may serve as regulators of cell migration in various cell types.

Methods

The Oris migration assay was used to assess the effect of fibronectin (FN) on cell motility. The Na+/H+ exchanger (NHE)-1 activity was evaluated by measuring pHi and [22Na+] uptake. To examine activated signaling molecules, western blot analysis and immunoprecipitation was performed.

Results

ECM components (FN, laminin, fibrinogen, and collagen type I) increased [22Na+] uptake, pHi, and cell migration. In addition, FN-induced increase of cell migration was inhibited by NHE-1 inhibitor amiloride or NHE-1-specific siRNA. FN selectively increased the mRNA and protein expression of NHE-1, but not that of NHE-2 or NHE-3. FN binds integrin β1 and subsequently stimulates caveolin-1 phosphorylation and Ca2 + influx. Then, NHE-1 is phosphorylated by RhoA and Rho kinases, and Ca2 +/calmodulin (CaM) signaling elicits complex formation with NHE-1, which is enriched in lipid raft/caveolae microdomains of the plasma membrane. Activation of NHE-1 continuously induces an increase of [22Na+] uptake and pHi. Finally, NHE-1-dependent extracellular signal-regulated kinase (ERK) 1/2 phosphorylation enhanced matrix metalloproteinase-2 (MMP-2) and filamentous-actin (F-actin) expression, partially contributing to the regulation of embryonic stem cells (ESCs) migration.

Conclusions

FN stimulated mESCs migration and proliferation through NHE-1 activation, which were mediated by lipid raft-associated caveolin-1, RhoA/ROCK, and Ca2 +/CaM signaling pathways.

General significance

The precise role of NHE in the modulation of ECM-related physiological functions such as proliferation and migration remains poorly understood. Thus, this study analyzed the relationship between FN and NHE in regulating the migration of mouse ESCs and their related signaling pathways.  相似文献   

18.

Background

Iron oxidation is thought to be predominantly handled enzymatically in the body, to minimize spontaneous combustion with oxygen and to facilitate cellular iron export by loading transferrin. This process may be impaired in disease, and requires more accurate analytical assays to interrogate enzymatic- and auto-oxidation within a physiologically relevant environment.

Method

A new triplex ferroxidase activity assay has been developed that overcomes the previous assay limitations of measuring iron oxidation at a physiologically relevant pH and salinity.

Results

Revised enzymatic kinetics for ceruloplasmin (Vmax ≈ 35 μM Fe3 +/min/μM; Km ≈ 15 μM) are provided under physiological conditions, and inhibition by sodium azide (Ki for Ferric Gain 78.3 μM, Ki for transferrin loading 8.1 × 104 μM) is quantified. We also used this assay to characterize the non-enzymatic oxidation of iron that proceeded linearly under physiological conditions.

Conclusions and general significance

These findings indicate that the requirement of an enzyme to oxidize iron may only be necessary under conditions of adverse pH or anionic strength, for example from hypoxia. In a normal physiological environment, Fe3 + incorporation into transferrin would be sufficiently enabled by the biological polyanions that are prevalent within extracellular fluids.  相似文献   

19.

Aims

The aim of the present study was to identify the potential therapeutic effects of BH3-mimetic gossypol on melanoma cells with acquired resistance to BRAF inhibitors.

Main methods

The IC50 values of gossypol were determined using MTT assays in three melanoma cell lines with different resistances to BRAF inhibitor. The effects of gossypol on three melanoma cell lines were further examined by immunoblotting analysis, cell cycle analysis, flow cytometric apoptotic assay and autophagy assay. The functional role of autophagy in gossypol-induced growth inhibition was investigated using siRNA-mediated knockdown of Beclin-1.

Key findings

Gossypol retained its efficacy in BRAF-V600E melanoma clones with acquired resistance to BRAF inhibitors through a mechanism independent of MEK–ERK inhibition. Gossypol caused G2/M arrest in both BRAF mutant A375P and A375P/Mdr cells with high expression of p21Cip1, regardless of their drug resistance. Interestingly, we determined that the lack of gossypol-induced mitotic arrest in BRAF-WT-harboring SK-MEL-2 cells was associated with a low level of p21Cip1 expression. In addition, gossypol preferentially induced autophagy and apoptosis in the gossypol-sensitive cells and not in the gossypol-resistant SK-MEL-2 cells. In particular, alleviation of autophagy by knockdown of Beclin-1 partially caused a resistance to gossypol-induced cell cycle arrest at G2/M in BRAF-V600E cells with a concomitant decreased induction of apoptosis.

Significance

Taken together, these results suggest that gossypol may exhibit potential for the treatment of BRAF inhibitor-resistant tumors, but a functional p21Cip1 is a prerequisite for a positive response to its clinical application.  相似文献   

20.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号