首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Previous animal studies have examined the potential for cytostatic drugs to induce learning and memory deficits in laboratory animals but, to date, there is no pre-clinical evidence that taxanes have the potential to cause cognitive impairment. Therefore our aim was to explore the short- and long-term cognitive effects of different dosing schedules of the taxane docetaxel (DTX) on laboratory rodents.

Main methods

Healthy male hooded Wistar rats were treated with DTX (6 mg/kg, 10 mg/kg) or physiological saline (control), once a week for 3 weeks (Experiment 1) or once only (10 mg/kg; Experiment 2). Cognitive function was assessed using the novel object recognition (NOR) task and spatial water maze (WM) task 1 to 3 weeks after treatment and again 4 months after treatment.

Key findings

Shortly after DTX treatment, rats perform poorly on NOR regardless of treatment regimen. Treatment with a single injection of 10 mg/kg DTX does not appear to induce sustained deficits in object recognition or peripheral neuropathy.

Significance

Overall these findings show that treatment with the taxane DTX in the absence of cancer and other anti-cancer treatments causes cognitive impairment in healthy rodents.  相似文献   

2.

Objective

To study the effect of rhynchophylline on N-methyl d-aspartate receptor subtype 2B subunit in hippocampus of Methamphetamine-induced conditioned place preference (CPP) mice.

Methods

Place preference mice models were established by methamphetamine; the expression of NR2B was observed by immunohistochemistry technique and Western blot.

Results

Methamphetamine (4 mg/kg)-induced place preference mice model was successfully established; ketamine (15 mg/kg), rhynchophylline (40 mg/kg) and rhynchophylline (80 mg/kg) can eliminate place preference; Immunohistochemistry showed that the number of NR2B-positive neurons in hippocampus was increased in the methamphetamine model group, whereas less NR2B-positive neurons were found in the ketamine group, low and high dosage rhynchophylline group. Western blot showed that the expression of NR2B protein was significantly increased in the model group, whereas less expression was found in the ketamine group, low and high dosage rhynchophylline group.

Conclusions

NR2B plays an important role in the formation of methamphetamine-induced place preference in mice. Rhynchophylline reversed the expression of NR2B in the hippocampus demonstrates the potential effect of mediates methamphetamine induced rewarding effect.  相似文献   

3.

Aims

This study was designed to investigate the protective effects of selenium supplementation on patulin-induced neurotoxicity.

Main methods

Mice were subjected to patulin for 8 weeks. Sodium selenite (Na2SeO3) and selenium–methionine (Se–Met) were supplemented with the diet, and we investigated the effects of selenium on patulin-induced neurotoxicity. The animals were randomly divided into 4 groups containing 6–8 mice each. The first group was used as a control, and only physiological saline (0.9%) was injected. The second group was treated with patulin (1 mg/kg) intraperitoneally. The third group was treated with patulin (1 mg/kg) along with a dietary supplementation of Na2SeO3 (0.2 mg Se/kg of diet). The fourth group was treated with patulin (1 mg/kg) plus Se–Met (0.2 mg Se/kg of diet).

Key findings

Patulin treatment increased oxidative damage in the brain, as evidenced by a decrease in non-protein thiol and total thiol groups, along with significant increases in GSSG, reactive oxygen species, thiobarbituric acid reactive substances and protein carbonyl levels. Moreover, the activities of glutathione peroxidase (GPx) and glutathione reductase were inhibited with patulin treatment. Selenium supplementation significantly ameliorated these biological parameter changes. In addition, selenium treatments significantly increased the mRNA levels of GPx-1, GPx-4 and thioredoxin reductase.

Significance

Our data show that selenium supplementation increases the activity and expression of glutathione-related enzymes and offers significant protection against brain damage induced by patulin.  相似文献   

4.

Aims

The purpose of this study was to investigate the antinociceptive effect of epicatechin as well as the possible mechanisms of action in diabetic rats.

Main methods

Rats were injected with streptozotocin to produce hyperglycemia. The formalin test was used to assess the nociceptive activity.

Key findings

Acute pre-treatment with epicatechin (0.03–30 mg/kg, i.p.) prevented formalin-induced nociception in diabetic rats. Furthermore, daily or every other day treatment for 2 weeks with epicatechin (0.03–30 mg/kg, i.p.) also prevented formalin-induced nociception in diabetic rats. Acute epicatechin-induced antinociception was prevented by l-NAME (Nω-nitro-l-arginine methyl ester hydrochloride, 1–10 mg/kg, non-selective nitric oxide synthesis inhibitor), 7-nitroindazole (0.1–1 mg/kg, selective neuronal nitric oxide synthesis inhibitor), ODQ (1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one, 0.2–2 mg/kg, guanylyl cyclase inhibitor) or glibenclamide (1–10 mg/kg, ATP-sensitive K+ channel blocker). Moreover, epicatechin (3 mg/kg)-induced antinociception was fully prevented by methiothepin (0.1–1 mg/kg, serotonergic receptor antagonist), WAY-100635 (0.03–0.3 mg/kg, selective 5-HT1A receptor antagonist) or SB-224289 (0.03–0.3 mg/kg, selective 5-HT1B receptor antagonist). In contrast, BRL-15572 (0.03–0.3 mg/kg, selective 5-HT1D receptor antagonist) only slightly prevented the antinociceptive effect of epicatechin. Naloxone (0.1–1 mg/kg, opioid antagonist) did not modify epicatechin's effect.

Significance

Data suggest the involvement of the nitric oxide–cyclic GMP–K+ channel pathway as well as activation of 5-HT1A and 5HT1B, and at a lesser extent, 5-HT1D, but not opioid, receptors in the antinociceptive effect of epicatechin in diabetic rats. Our data suggest that acute or chronic treatment with epicatechin may prove to be effective to treat nociceptive hypersensitivity in diabetic patients.  相似文献   

5.

Aims

We previously reported anti-dyslipidemic effects of a farnesoid X receptor antagonist in monkeys. In this study, we compared the cholesterol-lowering effects of single and combined administration of a farnesoid X receptor antagonist, compound-T8, and the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor atorvastatin in a guinea pig model.

Main methods

Plasma levels of 7α-hydroxy-4-cholesten-3-one, a marker of hepatic cholesterol 7α-hydroxylase activity, were measured after a single administration of compound-T8. The effects of compound-T8 or atorvastatin on plasma cholesterol levels and low-density lipoprotein (LDL) clearance were investigated after 14 or 16 days of repeated dosing, respectively. Fractional catabolic rate of plasma LDL was estimated by intravenous injection of DiI-labeled human LDL. The cholesterol-lowering effects of combination therapy were investigated after 7 days of repeated treatment.

Key findings

Compound-T8 (10 and 30 mg/kg) increased plasma 7α-hydroxy-4-cholesten-3-one levels in a dose-dependent manner. Single administration of compound-T8 (30 mg/kg) and atorvastatin (30 mg/kg) reduced plasma non-high-density lipoprotein (non-HDL) cholesterol levels by 48% and 46%, respectively, and increased clearance of plasma DiI-labeled LDL by 29% and 35%, respectively. Compound-T8 (10 mg/kg) or atorvastatin (10 mg/kg) reduced non-HDL cholesterol levels by 19% and 25%, respectively, and combination therapy showed an additive effect and lowered cholesterol levels by 48%.

Significance

Similar to atorvastatin, compound-T8 reduced plasma non-HDL cholesterol levels accompanied with accelerated LDL clearance in guinea pigs. Combination therapy additively decreased plasma non-HDL cholesterol levels. Therefore, monotherapy with a farnesoid X receptor antagonist and combination therapy of a farnesoid X receptor antagonist with atorvastatin would be attractive dyslipidemia treatment options.  相似文献   

6.

Aims

Anethole, the major component of the essential oil of star anise, has been reported to have antioxidant, antibacterial, antifungal, anti-inflammatory, and anesthetic properties. In this study, we investigated the anti-inflammatory effects of anethole in a mouse model of acute lung injury induced by lipopolysaccharide (LPS).

Main methods

BALB/C mice were intraperitoneally administered anethole (62.5, 125, 250, or 500 mg/kg) 1 h before intratracheal treatment with LPS (1.5 mg/kg) and sacrificed after 4 h. The anti-inflammatory effects of anethole were assessed by measuring total protein and cell levels and inflammatory mediator production and by histological evaluation and Western blot analysis.

Key findings

LPS significantly increased total protein levels; numbers of total cells, including macrophages and neutrophils; and the production of inflammatory mediators such as matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in bronchoalveolar lavage fluid. Anethole (250 mg/kg) decreased total protein concentrations; numbers of inflammatory cells, including neutrophils and macrophages; and the inflammatory mediators MMP-9, TNF-α and NO. In addition, pretreatment with anethole decreased LPS-induced histopathological changes. The anti-inflammatory mechanism of anethole in LPS-induced acute lung injury was assessed by investigating the effects of anethole on NF-κB activation. Anethole suppressed the activation of NF-κB by blocking IκB-α degradation.

Significance

These results, showing that anethole prevents LPS-induced acute lung inflammation in mice, suggest that anethole may be therapeutically effective in inflammatory conditions in humans.  相似文献   

7.

Aims

The purpose of this study was to compare the changes of antihyperalgesic effectiveness of zonisamide (25 and 50 mg/kg), an antiepileptic drug, on the early and late phases of neuropathy and to investigate the role of serotonergic descending inhibitory pain pathways in antihyperalgesic effectiveness of zonisamide in the streptozotocin-induced rat model for painful diabetic neuropathy.

Main methods

The hot-plate and tail-immersion, to determine thermal thresholds, and paw pressure withdrawal tests, to determine mechanical thresholds, were performed as hyperalgesia tests. To investigate the role of serotonergic pathway, 1 mg/kg ketanserin (5-HT2A/2C antagonist) and ondansetron (serotonin 5-HT3 receptor antagonist) were used.

Key findings

Zonisamide enhanced pain thresholds significantly in the 3rd, 6th and 8th weeks as the reference drugs morphine (5 mg/kg) and carbamazepine (32 mg/kg, tested only in the 3rd week). There were no observed differences on the potency of antihyperalgesic effect between weeks and between doses. Each antagonist reversed the effect of zonisamide in the hot-plate and tail-immersion tests significantly, but, relatively in the paw pressure withdrawal tests.

Significance

These results support the role for zonisamide in the management of diabetic neuropathic pain in all phases. Serotonin 5-HT2A/2C and 5-HT3 receptors are involved in the antihyperalgesic effect of zonisamide by enhancement of thermal threshold, and partially by mechanical threshold, so they may not mediate mechanical hyperalgesia in diabetic neuropathy.  相似文献   

8.

Aims

Two natural alkaloids, methyl (M) and isopropyl (I) N-methylanthranilates, with recently demonstrated significant pharmacological activities, were assayed for their possible overall effect on intact gastric mucosa and their protective properties towards the onset of gastric lesions induced by diclofenac (a non-steroidal anti-inflammatory drug, NSAID) or ethanol.

Main methods

The influence of I and M on gastric mucosa integrity was assessed by oral administration in doses of 200 mg/kg. The gastroprotective action of I and M in doses of 50, 100 and 200 mg/kg was analyzed in the diclofenac and ethanol-induced gastric lesion models in rats. After the treatment, the stomachs of the animals were analyzed (captured by a digital camera). Ulcer scoring, morphometric and histopathological analyses of the stomachs were done.

Key findings

The oral application of these compounds on their own, even in quite high doses (200 mg/kg) did not induce gastric lesions. Both alkaloids exerted a very strong antiulcer activity, even in low doses (50 mg/kg), by decreasing the number of lesions caused by the application of either diclofenac or ethanol, eliminating them completely or reducing them to a form of mucosal hyperemia.

Significance

Their possible mechanism of action was discussed and due to their many positive properties including anxiolytic, antidepressant, antinociceptive, anti-inflammatory and gastroprotective activities, as well as a cheap and simple synthetic route for their preparation, methyl and isopropyl N-methylanthranilates, both alike, might represent a cost effective alternative sought for in the treatment of peptic ulcers and/or new safer NSAIDs for pain management.  相似文献   

9.

Aims

Systemic administration of opiate analgesics such as morphine remains the most effective treatment for alleviating severe pain across a range of conditions including acute pain. However, chronic or repeated administration of opiate analgesics results in the development of analgesic tolerance. Glial cells such as microglia and astrocytes are known to release various inflammatory cytokines and neurotrophic factors leading to regulation of neuronal function. Recently, glial cells were reported to play important roles in the development of analgesic tolerance to morphine. Here, we focused on the involvement of midbrain glial cells, particularly astrocytes, in the development of analgesic tolerance to morphine.

Main methods

Mice were treated with morphine (10 mg/kg, s.c.) or vehicle once a day for 5 days. Pentoxifylline (an inhibitor of glial activation; 20 mg/kg, i.p. or 50 and 100 μg/mouse, i.c.v.) was administered 30 min before morphine treatment. Flavopiridol (a cyclin-dependent kinase inhibitor; 5 nmol/mouse, i.c.v.) was administered 10 min before and 10 h after morphine treatment. The analgesic effect of morphine was measured using the tail flick method.

Key findings

The development of analgesic tolerance to morphine was gradually observed during daily treatment of morphine for 5 days in mice. On days 1 and 3 after repeated morphine treatment, astrocyte marker glial fibrillary acidic protein expression levels were significantly increased, as determined by western blot analyses. These phenomena were significantly inhibited following pre-treatment with pentoxifylline or flavopiridol.

Significance

We demonstrated that midbrain astrocytes play an important role in the development of analgesic tolerance to morphine.  相似文献   

10.

Objective

To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain.

Methods

Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot.

Results

Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.).

Conclusion

ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.  相似文献   

11.

Aim

The purpose of this study was to investigate whether the flavonoid quercetin can prevent alterations in the behavioral tests and of cholinergic neurotransmission in rats submitted to the ethidium bromide (EB) experimental demyelination model during events of demyelination and remyelination.

Main methods

Wistar rats were randomly distributed into four groups (20 animals per group): Control (pontine saline injection and treatment with ethanol), Querc (pontine saline injection and treatment with quercetin), EB (pontine 0.1% EB injection and treatment with ethanol), and EB + Querc (pontine 0.1% EB injection and treatment with quercetin). The groups Querc and Querc + EB were treated once daily with quercetin (50 mg/kg) diluted in 25% ethanol solution (1 ml/kg) and the animals of the control and EB groups were treated once daily with 25% ethanol solution (1 ml/kg). Two stages were observed: phase of demyelination (peak on day 7) and phase of remyelination (peak on day 21 post-injection). Behavioral tests (beam walking, foot fault and inclined plane test), acetylcholinesterase (AChE) activity and lipid peroxidation in pons, cerebellum, hippocampus, hypothalamus, striatum and cerebral cortex were measured.

Key findings

The quercetin promoted earlier locomotor recovery, suggesting that there was demyelination prevention or further remyelination velocity as well as it was able to prevent the inhibition of AChE activity and the increase of lipidic peroxidation, suggesting that this compound can protect cholinergic neurotransmission.

Significance

These results may contribute to a better understanding of the neuroprotective role of quercetin and the importance of an antioxidant diet in humans to provide benefits in neurodegenerative diseases such as MS.  相似文献   

12.

Aims

Alpha-melanocyte stimulating hormone (α-MSH) is a pro-opiomelanocortin (POMC)-derived peptide involved in different neurological functions that also exerts anti-inflammatory effects, including in the central nervous system (CNS). Although inflammation has been implicated in seizures and epilepsy, no study has systematically investigated whether α-MSH modifies seizures. Therefore, in the current study we determined whether α-MSH alters pentylenetetrazol (PTZ)- and pilocarpine-induced seizures.

Main methods

Adult male Swiss mice were injected with α-MSH (1.66, 5 or 15 μg/3 μL, intracerebroventricular (i.c.v.)) or systemic (0.1, 0.3 or 1 mg/kg, intraperitoneally (i.p.)). Five to sixty minutes after the injection of the peptide, animals were injected with PTZ (60 mg/kg, i.p.) or pilocarpine (370 mg/kg, i.p.). Latency to myoclonic jerks and tonic–clonic seizures, number of seizure episodes, total time spent seizing and seizure intensity, assessed by the Racine and Meurs scales were recorded. Interleukin 1 beta (IL-1β) levels in the hippocampus were measured by a commercial enzyme-linked immunoabsorbent assay (ELISA).

Key findings

Neither intracerebroventricular (1.66, 5 or 15 μg/3 μL, i.c.v.) nor systemic (0.1, 0.3 or 1 mg/kg, i.p.) administration of α-MSH altered PTZ- and pilocarpine-induced seizures. IL-1β levels in the hippocampi were not altered by α-MSH, PTZ or pilocarpine.

Significance

Although inflammation has been implicated in seizures and epilepsy and α-MSH is a potent anti-inflammatory peptide, our results do not support a role for α-MSH in seizure control.  相似文献   

13.

Aims

Acute ethanol intoxication (AEI) attenuates the arginine vasopressin (AVP) response to hemorrhage leading to impaired hemodynamic counter-regulation and accentuated hemodynamic stability. Previously we identified that the ethanol-induced impairment of circulating AVP concentrations in response to hemorrhage was the result of augmented central nitric oxide (NO) inhibition. The aim of the current study was to examine the mechanisms underlying ethanol-induced up-regulation of paraventricular nucleus (PVN) NO concentration. Angiotensin (ANG) (1-7) is an important mediator of NO production through activation of the Mas receptor. We hypothesized that Mas receptor inhibition would decrease central NO concentration and thus restore the rise in circulating AVP levels during hemorrhagic shock in AEI rats.

Main methods

Conscious male Sprague–Dawley rats (300–325 g) received a 15 h intra-gastric infusion of ethanol (2.5 g/kg + 300 mg/kg/h) or dextrose prior to a fixed-pressure (~ 40 mm Hg) 60 min hemorrhage. The Mas receptor antagonist A-779 was injected through an intracerebroventricular (ICV) cannula 15 min prior to hemorrhage.

Key findings

PVN NOS activity and NO were significantly higher in AEI compared to DEX-treated controls at the completion of hemorrhage. ICV A-779 administration decreased NOS activity and NO concentration, partially restoring the rise in circulating AVP level at completion of hemorrhage in AEI rats.

Significance

These results suggest that Mas receptor activation contributes to the NO-mediated inhibitory tone of AVP release in the ethanol-intoxicated hemorrhaged host.  相似文献   

14.

Aims

We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1).

Main methods

Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1 g/kg) and l-alanine (0.67 g/kg) in their free form (GLN + ALA) or water (controls).

Key findings

Plasma from both DIP- and GLN + ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p < 0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN + ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1.

Significance

In trained rats, oral supplementation with DIP or GLN + ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training.  相似文献   

15.

Aims

Dietary flavonoid intake shows a significant inverse association with mortality from coronary heart disease, incidence of myocardial infarction and stroke. Quercetin is one of the most common flavonoids in our diet and has several favorable biological activities. Quercetin glucosides, which are enzymatically trans-glycosylated isoquercitrin, have high water-solubility and bioavailability compared with quercetin. Here, we investigated the effects of quercetin glucosides on collateral development in a murine hindlimb ischemia model.

Main methods

We induced hindlimb ischemia in 24- to 32-week-old male C3H/HeJ mice by resecting the right femoral artery. Then, 0.5% carboxymethyl cellulose (control) or quercetin glucosides (100 mg/kg/day) were administered daily by gavage. Blood flow was monitored weekly by laser Doppler imaging.

Key findings

Recovery of blood flow to the ischemic leg was significantly enhanced by quercetin glucosides (blood flow ratio at 4 weeks: control, 0.57 ± 0.11; quercetin glucosides, 0.95 ± 0.10, p < 0.05). Furthermore, anti-CD31 immunostaining revealed that quercetin glucosides increased capillary density in the ischemic muscle (control, 200 ± 24/mm2; quercetin glucosides, 364 ± 41/mm2, p < 0.01). Quercetin glucosides did not promote tumor growth. The beneficial effect of quercetin glucosides was abrogated in eNOS-deficient mice.

Significance

These results suggest that quercetin glucosides may have therapeutic potential to promote angiogenesis in ischemic tissue.  相似文献   

16.

Aims

In liver cirrhosis, inflammation triggers portal hypertension. Kupffer cells (KC) produce vasoconstrictors upon activation by bacterial constituents. Here, we hypothesize that the anti-inflammatory action of the cannabinoid receptor 2 (CB2) agonists JWH-133 and GP 1a attenuate portal hypertension.

Main methods

In vivo measurements of portal pressures and non-recirculating liver perfusions were performed in rats 4 weeks after bile duct ligation (BDL). Zymosan (150 μg/ml, isolated liver perfusion) or LPS (4 mg/kg b.w., in vivo) was infused to activate the KC in the absence or presence of JWH-133 (10 mg/kg b.w.), GP 1a (2.5 mg/kg b.w.) or ZnPP IX (1 μM). Isolated KC were treated with Zymosan (0.5 mg/ml) in addition to JWH-133 (5 μM). The thromboxane (TX) B2 levels in the perfusate and KC media were determined by ELISA. Heme oxygenase-1 (HO-1) and CB2 were analyzed by Western blot or confocal microscopy.

Key findings

JWH-133 or GP 1a pre-treatment attenuated portal pressures following KC activation in all experimental settings. In parallel, HO-1 expression increased with JWH-133 pre-treatment. However, the inhibition of HO-1 enhanced portal hypertension, indicating the functional role of this novel pathway. In isolated KC, the expression of CB2 and HO-1 increased with Zymosan, LPS and JWH-133 treatment while TXB2 production following KC activation was attenuated by JWH-133 pre-treatment.

Significance

JWH-133 or GP 1a treatment attenuates portal hypertension. HO-1 induction by JWH-133 plays a functional role. Therefore, the administration of JWH-133 or GP 1a represents a promising new treatment option for portal hypertension triggered by microbiological products.  相似文献   

17.

Aims

Bombesin receptors (BB receptors) and bombesin related peptides are expressed in the lower urinary tract of rodents. Here we investigated whether in vivo activation of BB receptors can contract the urinary bladder and facilitate micturition in sham rats and in a diabetic rat model of voiding dysfunction.

Material and methods

In vivo cystometry experiments were performed in adult female Sprague–Dawley rats under urethane anesthesia. Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.) injection. Experiments were performed 9 and 20 weeks post STZ-treatment. Drugs included neuromedin B (NMB; BB1 receptor preferring agonist), and gastrin-releasing peptide (GRP; BB2 receptor preferring agonist).

Key findings

NMB and GRP (0.01–100 μg/kg in sham rats; 0.1–300 μg/kg in STZ-treated rats, i.v.) increased micturition frequency, bladder contraction amplitude and area under the curve dose dependently in both sham and STZ-treated rats. In addition, NMB (3, 10 μg/kg i.v.) triggered voiding in > 80% of STZ-treated rats when the bladder was filled to a sub-threshold voiding volume. NMB and GRP increased mean arterial pressure and heart rate at the highest doses, 100 and 300 μg/kg.

Significance

Activation of bombesin receptors facilitated neurogenic bladder contractions in vivo. Single applications of agonists enhanced or triggered voiding in sham rats as well as in the STZ-treated rat model of diabetic voiding dysfunction. These results suggest that BB receptors may be targeted for drug development for conditions associated with poor detrusor contraction such as an underactive bladder condition.  相似文献   

18.

Background

Polymorphisms in apolipoprotein A5 gene (APOA5) have been associated with higher triglyceride levels in many populations. The aim of the study was to determine the allelic and genotypic distribution of the APOA5 − 1131T > C polymorphism and to identify the association of the genetic variant and the risk for dyslipidemia.

Methods

We genotyped 109 dyslipidemic subjects and 107 controls. The total cholesterol, triglycerides and HDL-c were determined enzymatically. Comparison of means among groups was calculated by ANOVA. Significant differences among groups were evaluated by Student–Newman–Keuls test.

Results

The minor allele C was more frequent in dyslipidemic subjects than controls (p = 0.019) and confers an increased individual risk for dyslipidemia (OR = 1.726, CI 95% = 1.095–2.721). The genotype analysis by gender showed that this allele was more frequent in dyslipidemic males (p = 0.037; OR = 2.050, CI 95% = 1.042–4.023). When participants were analyzed according to genotypes TT and TC/CC, C-carriers presented higher cholesterol and triglycerides levels than TT homozygous (p = 0.046 and 0.049, respectively).

Conclusions

The allele C confers higher total cholesterol and triglycerides levels in dyslipidemic adults. The APOA5 − 1131T > C polymorphism is associated with dyslipidemia in male subjects.  相似文献   

19.

Objective

To evaluate changes in physical performance in institutionalized older adults through a program of physiotherapy exercises.

Materials and methods

A quasi-experimental study was conducted on adults over 60 years-old, institutionalized in Lima, Peru. The exercise program was implemented in 45 minutes sessions included warming-up, muscle strengthening exercises, balance, gait training and cooling phase, three times a week for 12 weeks. Physical performance was measured with the Short Physical Performance Battery (SPPB) one week before and after the intervention. It included 45 participants, of whom 16 did not attend any of the sessions and was used as a control group.

Results

The mean age was 77.6 ± 7.1 years, and 62.2% were women. The mean baseline SPPB was 7.0 ± 1.6 in the intervention group, and 6.9 ± 1.9 in the control group (P=.90). A change of 2.6 ± 1.8 was observed in the SPPB of the intervention group versus -1.4 ± 2.0 in the control group (P<.001).

Conclusions

The development of a physiotherapy exercise program for institutionalized elderly increases physical performance, which could be implemented in care centers for elderly.  相似文献   

20.

Aims

The renin–angiotensin system (RAS) plays a major role in cardiovascular diseases in postmenopausal women, but little is known about its importance to lower urinary tract symptoms. In this study we have used the model of ovariectomized (OVX) estrogen-deficient rats to investigate the role of RAS in functional and molecular alterations in the urethra and bladder.

Main methods

Responses to contractile and relaxant agents in isolated urethra and bladder, as well as cystometry were evaluated in 4-month OVX Sprague–Dawley rats. Angiotensin-converting enzyme activity and Western blotting for AT1/AT2 receptors were examined.

Key findings

Cystometric evaluations in OVX rats showed increases in basal pressure, capacity and micturition frequency, as well as decreased voiding pressure. Angiotensin II and phenylephrine produced greater urethral contractions in OVX compared with Sham group. Carbachol-induced bladder contractions were significantly reduced in OVX group. Relaxations of urethra and bladder to sodium nitroprusside and BAY 41-2272 were unaffected by OVX. Angiotensin-converting enzyme activity was 2.6-fold greater (p < 0.05) in urethral tissue of OVX group, whereas enzyme activity in plasma and bladder remained unchanged. Expressions of AT1 and AT2 receptors in the urethra were markedly higher in OVX group. In bladder, AT1 receptors were not detected, whereas AT2 receptor expression was unchanged between groups. 17β-Estradiol replacement (0.1 mg/kg, weekly) or losartan (30 mg/kg/day) largely attenuated most of the alterations seen in OVX group.

Significance

Prolonged estrogen deprivation leads to voiding dysfunction and urethral hypercontractility that are associated with increased ACE activity and up-regulation of angiotensin AT1/AT2 receptor in the urethral tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号