首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of aromatase: insights from recent studies   总被引:3,自引:0,他引:3  
Santen RJ 《Steroids》2003,68(7-8):559-567
Aromatase is the rate limiting enzyme that catalyzes the conversion of androgens to estrogens. Blockade of this step allows treatment of diseases that are dependent upon estrogen. Over the past two decades, highly potent and specific aromatase inhibitors have been developed which block total body aromatization by over 99%. An important recent question is whether aromatase inhibitors are superior to the antiestrogens for treatment of hormone-dependent breast cancer. The third generation aromatase inhibitors have been compared to tamoxifen for the treatment of breast cancer in the advanced, adjuvant, and neoadjuvant settings. All of these studies suggest the superiority of aromatase inhibitors over tamoxifen. The mechanism responsible for the superiority of the aromatase inhibitors relates to the estrogen agonistic effects of tamoxifen. During exposure to estrogen deprived conditions and to tamoxifen, breast cancer cells adapt and upregulate the MAP kinase and PI-3 kinase pathways. These growth factor signaling pathways potentiate the estrogen agonistic properties of tamoxifen. Data from a large adjuvant therapy trial (ATAC trial) provide evidence that the aromatase inhibitors may also be superior for breast cancer prevention. The mechanism for superiority in this setting probably relates to the genotoxic effects of estradiol metabolites. The aromatase inhibitors may be also useful for the treatment of endometriosis and for ovulation induction as evidenced by preliminary data. The recent advances in development of the aromatase inhibitors clearly demonstrate the utility of these agents for treatment of breast cancer and potentially for other indications.  相似文献   

2.
Aromatase and its inhibitors   总被引:8,自引:0,他引:8  
Inhibitors of aromatase (estrogen synthetase) have been developed as treatment for postmenopausal breast cancer. Both steroidal substrate analogs, type I inhibitors, which inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now available. 4-hydroxyandrostenedione (4-OHA), the first selective aromatase inhibitor, has been shown to reduce serum estrogen concentrations and cause complete and partial responses in approximately 25% of patients with hormone responsive disease who have relapsed from previous endocrine treatment. Letrozole (CGS 20, 269) and anastrozole (ZN 1033) have been recently approved for treatment. Both suppress serum estrogen levels to the limit of assay detection. Letrozole has been shown to be significantly superior to megace in overall response rates and time to treatment failure, whereas anastrozole was found to improve survival in comparison to megace. Both were better tolerated than the latter. The potential of aromatase within the breast as a significant source of estrogen mediating tumor proliferation and which might determine the outcome of inhibitor treatment was explored. Using immunocytochemistry and in situ hybridization, aromatase and mRNAarom was detected mainly in the epithelial cells of the terminal ductal lobular units (TDLU) of the normal breast and also in breast tumor epithelial cells as well as some stromal cells. Increase in proliferation, measured by increased thymidine incorporation into DNA and by PCNA immunostaining in response to testosterone was observed in histocultures of breast cancer samples. This effect could be inhibited by 4-OHA and implies that intratumoral aromatase has functional significance. An intratumoral aromatase model in the ovariectomized nude mouse was developed which simulated the hormone responsive postmenopausal breast cancer patient. This model also allows evaluation of the efficacy of aromatase inhibitors and antiestrogens in tumors of estrogen receptor positive, human breast carcinoma cells transfected with the human aromatase gene. Thus, the cells synthesized estrogen which stimulated tumor formation. Both aromatase inhibitors and antiestrogens were effective in suppressing tumor growth in this model. However, letrozole was more effective than tamoxifen. When the aromatase inhibitors were combined with tamoxifen, tumor growth was suppressed to about the same extent as with the aromatase inhibitors alone. Thus, there was no additive or synergistic effects of combining tamoxifen with aromatase inhibitors. This suggests that sequential treatment with these agents is likely to be more beneficial to the patient in terms of longer response to treatment.  相似文献   

3.
Estrogen plays important roles in hormone receptor-positive breast cancer. Endocrine therapies, such as the antiestrogen tamoxifen, antagonize the binding of estrogen to estrogen receptor (ER), whereas aromatase inhibitors (AIs) directly inhibit the production of estrogen. Understanding the mechanisms of endocrine resistance and the ways in which we may better treat these types of resistance has been aided by the development of cellular models for resistant breast cancers. In this review, we will discuss what is known thus far regarding both de novo and acquired resistance to tamoxifen or AIs. Our laboratory has generated a collection of AI- and tamoxifen-resistant cell lines in order to comprehensively study the individual types of resistance mechanisms. Through the use of microarray analysis, we have determined that our cell lines resistant to a particular AI (anastrozole, letrozole, or exemestane) or tamoxifen are distinct from each other, indicating that these mechanisms can be quite complex. Furthermore, we will describe two novel de novo AI-resistant cell lines that were generated from our laboratory. Initial characterization of these cells reveals that they are distinct from our acquired AI-resistant cell models. In addition, we will review potential therapies which may be useful for overcoming resistant breast cancers through studies using endocrine resistant cell lines. Finally, we will discuss the benefits and shortcomings of cell models. Together, the information presented in this review will provide us a better understanding of acquired and de novo resistance to tamoxifen and AI therapies, the use of appropriate cell models to better study these types of breast cancer, which are valuable for identifying novel treatments and strategies for overcoming both tamoxifen and AI-resistant breast cancers.  相似文献   

4.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

5.
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.  相似文献   

6.
7.
Jordan VC  Brodie AM 《Steroids》2007,72(1):7-25
This article describes the origins and evolution of "antiestrogenic" medicines for the treatment and prevention of breast cancer. Developing drugs that target the estrogen receptor (ER) either directly (tamoxifen) or indirectly (aromatase inhibitors) has improved the prognosis of breast cancer and significantly advanced healthcare. The development of the principles for treatment and the success of the concept, in practice, has become a model for molecular medicine and presaged the current testing of numerous targeted therapies for all forms of cancer. The translational research with tamoxifen to target the ER with the appropriate duration (5 years) of adjuvant therapy has contributed to the falling national death rates from breast cancer. Additionally, exploration of the endocrine pharmacology of tamoxifen and related nonsteroidal antiestrogen (e.g. keoxifene now known as raloxifene) resulted in the laboratory recognition of selective ER modulation and the translation of the concept to use raloxifene for the prevention of osteoporosis and breast cancer. However, the extensive evaluation of tamoxifen treatment revealed small but significant side effects such as endometrial cancer, blood clots and the development of acquired resistance. The solution was to develop drugs that targeted the aromatase enzyme specifically to prevent the conversion of androstenedione to estrone and subsequently estradiol. The successful translational research with the suicide inhibitor 4-hydroxyandrostenedione (known as formestane) pioneered the development of a range of oral aromatase inhibitors that are either suicide inhibitors (exemestane) or competitive inhibitors (letrozole and anastrozole) of the aromatase enzyme. Treatment with aromatase inhibitors is proving effective and is associated with reduction in the incidence of endometrial cancer and blood clots when compared with tamoxifen and there is also limited cross resistance so treatment can be sequential. Current clinical trials are addressing the value of aromatase inhibitors as chemopreventive agents for postmenopausal women.  相似文献   

8.
The agents used for endocrine therapy in patients with breast cancer have changed markedly over the past decade. Tamoxifen remains the anti-oestrogen of choice, but could be replaced by the oestrogen receptor down-regulator ICI 182780 or by the fixed ring triphenylethylene arzoxifene (previously SERM III) soon. Whilst aminoglutethimide and 4-OH androstenedione were the aromatase inhibitors of choice, they have been replaced by non-steroidal (anastrozole and letrozole) and steroidal (exemestane) inhibitors of high potency and low side effect profile. Previously, often used treatments such as progestogens (megestrol acetate and medroxyprogesterone acetate) and androgens are now rarely used or confined to fourth or fifth line treatments. The LHRH agonist, goserelin, remains the treatment of choice for pre-menopausal patients with advanced breast cancer although recent randomised trials indicate a response, time to progression and survival advantage for the combination of goserelin and tamoxifen compared with goserelin alone.

The newer treatments have led to questions concerning the optimum sequence of agents to use in advanced breast cancer and as neo-adjuvant and adjuvant therapy in relation to surgery. Two trials of anastrozole compared with tamoxifen and one trial of letrozole compared with tamoxifen indicate that the new triazole aromatase inhibitors have a significant advantage over the anti-oestrogen with respect to time to progression and survival. Similarly, triazole aromatase inhibitors give faster and more complete responses compared with tamoxifen when used in post-menopausal women before surgery.

Major research questions remain with respect to the aromatase inhibitors used as adjuvant therapy. Anastrozole is being tested alone or in combination with tamoxifen compared with tamoxifen in the ‘so-called’ ATAC trial. Over 9000 patients have been randomised to this important study: the results will be available late-2001. A similar study comparing letrozole and tamoxifen started recently under the auspices of the Breast International Group. Importantly, this trial is also comparing the sequence of tamoxifen followed by letrozole (or vice versa). A similar trial of exemestane given after 2–3 years of tamoxifen compared with 5 years of tamoxifen is recruiting well as is a study comparing letrozole (or placebo) for 5 years after 5 years of adjuvant tamoxifen. These studies may show that aromatase inhibitors are superior to tamoxifen or that a sequence is preferable.

ICI 182780 causes complete oestrogen receptor down-regulation leading to a the lack of agonist activity of the drug. Two trials of ICI 182780 compared with anastrozole for advanced disease will report later this year and a comparison with tamoxifen next year. Arzoxifene (SERM III) is being tested against tamoxifen. These studies are likely to result in new anti-oestrogens being introduced into the clinic.

Most of our endocrine treatments deprived the tumour cell of oestradiol. In vitro experiments with MCF-7 cells indicate that tumour cells can adapt and then grow in response to low oestrogen concentrations in the tissue—culture medium. Importantly, the cells were shown to apoptose in response to high oestrogen concentrations. A recent clinical trial has demonstrated a high response rate to stilboestrol given after a median of four previous oestrogen depriving endocrine therapies. These data and the newer treatments available indicate a need to re-think our general approach to endocrine therapy and endocrine prevention.  相似文献   


9.
Around 60–80% of all breast tumors are estrogen receptor-positive. One of the several therapeutic approaches used for this type of cancers is the use of aromatase inhibitors. Exemestane is a third-generation steroidal aromatase inhibitor that undergoes a complex and extensive metabolism, being catalytically converted into chemically active metabolites. Recently, our group showed that the major exemestane metabolites, 17β-hydroxy-6-methylenandrosta-1,4-dien-3-one and 6-(hydroxymethyl)androsta-1,4,6-triene-3,17-dione, as well as, the intermediary metabolite 6β-Spirooxiranandrosta-1,4-diene-3,17-dione, are potent aromatase inhibitors in breast cancer cells. In this work, in order to better understand the biological mechanisms of exemestane in breast cancer and the effectiveness of its metabolites, it was investigated their effects in sensitive and acquired-resistant estrogen receptor-positive breast cancer cells. Our results indicate that metabolites induced, in sensitive breast cancer cells, cell cycle arrest and apoptosis via mitochondrial pathway, involving caspase-8 activation. Moreover, metabolites also induced autophagy as a promoter mechanism of apoptosis. In addition, it was demonstrated that metabolites can sensitize aromatase inhibitors-resistant cancer cells, by inducing apoptosis. Therefore, this study indicates that exemestane after metabolization originates active metabolites that suppress the growth of sensitive and resistant breast cancer cells. It was also concluded that, in both cell lines, the biological effects of metabolites are different from the ones of exemestane, which suggests that exemestane efficacy in breast cancer treatment may also be dependent on its metabolites.  相似文献   

10.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway.  相似文献   

11.
《Translational oncology》2020,13(2):423-440
Tamoxifen is a successful endocrine therapy drug for estrogen receptor–positive (ER+) breast cancer. However, resistance to tamoxifen compromises the efficacy of endocrine treatment. In the present study, we identified potential tamoxifen resistance–related gene markers and investigated their mechanistic details. First, we established two ER + breast cancer cell lines resistant to tamoxifen, named MCF-7/TMR and BT474/TMR. Gene expression profiling showed that CXXC finger protein 4 (CXXC4) expression is lower in MCF-7/TMR cells than in MCF-7 cells. Furthermore, CXXC4 mRNA and protein expression are lower in the resistant cell lines than in the corresponding parental cell lines. We also investigated the correlation between CXXC4 and endocrine resistance in ER + breast cancer cells. CXXC4 knockdown accelerates cell proliferation in vitro and in vivo and renders breast cancer cells insensitive to tamoxifen, whereas CXXC4 overexpression inhibits cancer cell growth and increases tamoxifen sensitivity of resistant cells. In addition, we demonstrated that CXXC4 inhibits Wnt/β-catenin signaling in cancer cells by modulating the phosphorylation of GSK-3β, influencing the integrity of the β-catenin degradation complex. Silencing the CXXC4 gene upregulates expression of cyclinD1 and c-myc (the downstream targets of Wnt signaling) and promotes cell cycle progression. Conversely, ectopic expression of CXXC4 downregulates the expression of these proteins and arrests the cell cycle in the G0/G1 phase. Finally, the small-molecule inhibitor XAV939 suppresses Wnt signaling and sensitizes resistant cells to tamoxifen. These results indicate that components of Wnt pathway that are early in response to tamoxifen could be involved as an intrinsic factor of the transition to endocrine resistance, and inhibition of Wnt signaling may be an effective therapeutic strategy to overcome tamoxifen resistance.  相似文献   

12.
Advanced breast cancer remains incurable. For these patients, durable response and minimal toxicity are the main goals of current therapy. The antiestrogen tamoxifen has proved to be a significant advance in the treatment of breast cancer. Due to its partial estrogen activity, long term medication with tamoxifen has been found to cause endometrium proliferation wich can result in cancer in some patients. Reduction of estrogen production identified the aromatase inhibitors. Both steroidal substrate analog, type I inactivator, wich inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now avaiable. Two new 3(rd) generation aromatase inactivators have recently completed phase III evaluation (anastrozole and letrozole) and we have some results investigating one of the new 3(rd) generation aromatase inhibitors (exemestane). The 3(rd) generation aromatase inhibitors and inactivators are better tolerated and more effective than each of our current standard 2(nd) line endocrin therapies. These agents are being directly compared with standard adjuvant medication, tamoxifen, or are being evaluated in different sequences.  相似文献   

13.
KLF4 plays an important role in orchestrating a variety of cellular events, including cell-fate decision, genome stability and apoptosis. Its deregulation is correlated with human diseases such as breast cancer and gastrointestinal cancer. Results from recent biochemical studies have revealed that KLF4 is tightly regulated by posttranslational modifications. Here we report a new finding that KLF4 orchestrates estrogen receptor signaling and facilitates endocrine resistance. We also uncovered the underlying mechanism that alteration of KLF4 by posttranslational modifications such as phosphorylation and ubiquitylation changes tumor cell response to endocrine therapy drugs. IHC analyses using based on human breast cancer specimens showed the accumulation of KLF4 protein in ER-positive breast cancer tissues. Elevated KLF4 expression significantly correlated with prognosis and endocrine resistance. Our drug screening for suppressing KLF4 protein expression led to identification of Src kinase to be a critical player in modulating KLF4-mediated tamoxifen resistance. Depletion of VHL (von Hippel-Lindau tumor suppressor), a ubiquitin E3 ligase for KLF4, reduces tumor cell sensitivity to tamoxifen. We demonstrated phosphorylation of VHL by Src enhances proteolysis of VHL that in turn leads to upregulation of KLF4 and increases endocrine resistance. Suppression of Src-VHL-KLF4 cascade by Src inhibitor or enhancement of VHL-KLF4 ubiquitination by TAT-KLF4 (371-420AAa) peptides re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen treatment. Taken together, our findings demonstrate a novel role for KLF4 in modulating endocrine resistance via the Src-VHL-KLF4 axis.  相似文献   

14.
Estrogen and its cognate estrogen receptor are key players in the etiology and progression of breast cancer. Aromatase inhibitors, suppressing tumor and plasma estrogen levels by blocking testosterone conversion to estrogen, have been proven to provide the most effective endocrine therapy for postmenopausal breast cancer patients. Aromatase inhibitors are now the first choice endocrine therapy in the metastatic setting for postmenopausal women. These endocrine agents also seem likely to soon become the standard adjuvant therapy, either alone or in sequence with tamoxifen, though their long-term toxicity and the optimum duration of therapy still remain to be defined. Advanced experimental studies and some clinical observations reveal the importance of blocking both the genomic and non-genomic activities of the estrogen receptor, as well as its crosstalk with growth factor and other cellular signaling, for greatest effectiveness of endocrine therapy. Consequently, these studies provide a mechanistic explanation for the superb performance of aromatase inhibitors, and also suggest how inhibiting selected growth factor receptors might delay or prevent the onset of resistance to aromatase inhibitors and other endocrine therapies.  相似文献   

15.
Estrogen stimulates the proliferation of estrogen receptor (ER)-positive breast cancer cells. Aromatase is the enzyme responsible for the conversion of androgens into estrogens, and synthetic aromatase inhibitors such as letrozole, anastrozole, and exemestane have proven to be effective endocrine regimens for ER-positive breast cancer. In a recent study, we have found that 4-benzyl-3-(4'-chlorophenyl)-7-methoxycoumarin is a potent competitive inhibitor of aromatase with respect to the androgen substrate. Its K(i) value was determined to be 84 nm, significantly more potent than several known aromatase inhibitors. The specific interaction of this compound with aromatase was further demonstrated by the reduction of its binding by several mutations at the active site region of aromatase and evaluated by computer modeling analysis. The structure-activity studies have revealed that three functional groups (i.e. 3-(4'-chlorophenyl), 4-benzyl, and 7-methoxyl) of this coumarin are important in its inhibition of aromatase. In addition, through a matrigel thread three-dimensional cell culture, this compound was shown to behave like known aromatase inhibitors that suppress the proliferation of aromatase and estrogen receptor positive MCF-7aro breast cancer cells. This coumarin has been shown not to be cytotoxic at up to 40 mum. It was found not to be an inhibitor of steroid 5alpha-reductase that also utilizes androgen as the substrate and not to be a ligand of ERalpha, ERbeta, estrogen-related receptors, or androgen receptor. These results demonstrate that coumarins (a common type of phytochemical) or their derivatives can be potent inhibitors of aromatase and may be useful in suppressing aromataseand ER-positive breast tumors.  相似文献   

16.
Zhang X  Ding L  Kang L  Wang ZY 《PloS one》2012,7(1):e30174
It is prevailingly thought that the antiestrogens tamoxifen and ICI 182, 780 are competitive antagonists of the estrogen-binding site of the estrogen receptor-alpha (ER-α). However, a plethora of evidence demonstrated both antiestrogens exhibit agonist activities in different systems such as activation of the membrane-initiated signaling pathways. The mechanisms by which antiestrogens mediate estrogen-like activities have not been fully established. Previously, a variant of ER-α, EP-α36, has been cloned and showed to mediate membrane-initiated estrogen and antiestrogen signaling in cells only expressing ER-α36. Here, we investigated the molecular mechanisms underlying the antiestrogen signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of endogenous ER-α36. We found that the effects of both 4-hydoxytamoxifen (4-OHT) and ICI 182, 780 (ICI) exhibited a non-monotonic, or biphasic dose response curve; antiestrogens at low concentrations, elicited a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, antiestrogens inhibited cell growth. Antiestrogens at l nM induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at 5 μM induced Src-Y527 phosphorylation that inactivates Src. Antiestrogens at 1 nM also induced phosphorylation of the MAPK/ERK and activated the Cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at 5 μM. Knock-down of ER-α36 abrogated the biphasic antiestrogen signaling in these cells. Our results thus indicated that ER-α36 mediates biphasic antiestrogen signaling in the ER-negative breast cancer cells and Src functions as a switch of antiestrogen signaling dependent on concentrations of antiestrogens through the EGFR/STAT5 pathway.  相似文献   

17.
The third-generation aromatase inhibitors, letrozole, anastrozole, and exemestane, have been shown to be effective both as alternatives to tamoxifen in first-line treatment of hormone-sensitive advanced breast cancer in postmenopausal women and following failure of first-line tamoxifen for endocrine therapy. These 3 agents are now being investigated as adjuvant therapy of early breast cancer, as alternative or complementary treatments to the standard, tamoxifen. Three treatment strategies are under investigation: replacement of tamoxifen as adjuvant therapy for 5 years (early adjuvant therapy), sequencing of tamoxifen before or after an aromatase inhibitor during the first 5 years (early sequential adjuvant therapy), or following 5 years of tamoxifen (extended adjuvant therapy). In the first adjuvant trial (Arimidex, Tamoxifen Alone or in Combination [ATAC]), anastrozole was significantly superior to tamoxifen in reducing risk of disease recurrence, and recently, the Breast International Group (BIG) trial BIG 1-98 demonstrated the significant superiority of letrozole over tamoxifen in improving disease-free survival. A large trial (International Collaborative Cancer Group [ICCG] trial 96) investigated sequencing of 2 to 3 years of exemestane after 2 to 3 years of tamoxifen and found that switching to exemestane was significantly superior in disease-free survival compared with continuing on tamoxifen. The Arimidex or Nolvadex (ARNO) and the small ITA (Italian Tamoxifen Arimidex) trials similarly sequenced anastrozole after tamoxifen and also found that sequencing reduced the hazard of recurrence compared with remaining on tamoxifen. Trial MA.17 evaluated extended adjuvant therapy with letrozole vs placebo following 5 years of tamoxifen. Disease-free survival was significantly improved with letrozole vs placebo, irrespective of whether patients had lymph node-positive or node-negative tumors. All 3 aromatase inhibitors were generally well tolerated. Results of these trials indicate that aromatase inhibitors provide important benefits relative to tamoxifen in each of these adjuvant treatment settings, but the optimal approach still needs to be defined. Other trials continue to investigate some of these adjuvant treatment strategies.  相似文献   

18.
Estrogen signaling plays a critical role in the pathogenesis of breast cancer. Because the majority of breast carcinomas express the estrogen receptor ERα, endocrine therapy that impedes estrogen-ER signaling reduces breast cancer mortality and has become a mainstay of breast cancer treatment. However, patients remain at continued risk of relapse for many years after endocrine treatment. It has been proposed that cancer recurrence may be attributed to cancer stem cells (CSCs)/tumor-initiating cells (TICs). Previous studies in breast cancer have shown that such cells can be enriched and propagated in vitro by culturing the cells in suspension as mammospheres/tumorspheres. Here we established tumorspheres from ERα-positive human breast cancer cell line MCF7 and investigated their response to antiestrogens Tamoxifen and Fulvestrant. The tumorsphere cells express lower levels of ERα and are more tumorigenic in xenograft assays than the parental cells. Both 4-hydroxytamoxifen (4-OHT) and Fulvestrant attenuate tumorsphere cell proliferation, but only 4-OHT at high concentrations interferes with sphere formation. However, treated tumorsphere cells retain the self-renewal capacity. Upon withdrawal of antiestrogens, the treated cells resume tumorsphere formation and their tumorigenic potential remains undamaged. Depletion of ERα shows that ERα is dispensable for tumorsphere formation and xenograft tumor growth in mice. Surprisingly, ERα-depleted tumorspheres display heightened sensitivity to 4-OHT and their sphere-forming capacity is diminished after the drug is removed. These results imply that 4-OHT may inhibit cellular targets besides ERα that are essential for tumorsphere growth, and provide a potential strategy to sensitize tumorspheres to endocrine treatment.  相似文献   

19.
20.
There is increasing evidence that endocrine therapy has an important role in patients with oestrogen receptor positive breast cancer. Several large meta-analyses have reinforced the value of both ovarian ablation and tamoxifen in improving survival. Over the past decade, aromatase inhibitors have become the treatment of choice for second-line therapy of metastatic breast cancer, and the third generation inhibitors have now an established reputation for good patient tolerability. Early studies indicated that aminoglutethimide/hydrocortisone could benefit postmenopausal patients with primary breast cancer, and in 2001, the ATAC study showed that the third generation aromatase inhibitor, anastrozole, seemed superior to tamoxifen in that anastrozole-treated patients had a longer disease-free survival. Other studies will report on the relative merits of the steroidal inhibitor exemestane as well as non-steroidal letrozole. The exact duration and sequencing of treatment, together with the long-term effects on bone are at present, unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号