首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To establish the frequency of IDH1 mutations and MGMT methylation in primary glioblastomas.

Experimental design

We screened primary glioblastoma multiforme (GBM) in a population-based study for IDH1 mutations and MGMT methylation and correlated them with clinical data.

Results

IDH1 mutations were detected in 5 of 40 primary glioblastomas (12,5%). Primary GBM patients carrying IDH1 mutations were significantly younger, mean age of 41 ± 5.06 years, than patients with wild-type IDH1, mean age of 57 ± 2,29 years, p = 0.011. The mean survival time of all GBM patients with and without IDH1 mutations was 19 months (5 cases) and 16 months (35 cases), respectively (p > 0,05). MGMT methylation was detected in 13 of the 40 patients (32,5%). MGMT-promoter methylation did not correlate with overall survival (OS; p > 0,05).

Conclusion

In summary, our study is the first study to investigate the IDH1 mutation status and MGMT methylation in primary GBMs in Turkish population and confirmed IDH1 mutation as a genetic marker for also primary GBMs. Our data are still insufficient for definite ascertainment; and our preliminary results suggest: IDH1 status shows an association with younger age and there is a lack of association between IDH1 mutation and survival time. Furthermore MGMT promoter methylation had no prognostic value and lower frequency in primary glioblastomas.  相似文献   

2.

Background

In recent years, reversible lysine acylation of proteins has emerged as a major post-translational modification across the cell, and importantly has been shown to regulate many proteins in mitochondria. One key family of deacylase enzymes is the sirtuins, of which SIRT3, SIRT4, and SIRT5 are localised to the mitochondria and regulate acyl modifications in this organelle.

Scope of review

In this review we discuss the emerging role of lysine acylation in the mitochondrion and summarise the evidence that proposes mitochondrial sirtuins are important players in the modulation of mitochondrial energy metabolism in response to external nutrient cues, via their action as lysine deacylases. We also highlight some key areas of mitochondrial sirtuin biology where future research efforts are required.

Major conclusions

Lysine deacetylation appears to play some role in regulating mitochondrial metabolism. Recent discoveries of new enzymatic capabilities of mitochondrial sirtuins, including desuccinylation and demalonylation activities, as well as an increasing list of novel protein substrates have identified many new questions regarding the role of mitochondrial sirtuins in the regulation of energy metabolism.

General significance

Dynamic changes in the regulation of mitochondrial metabolism may have far-reaching consequences for many diseases, and despite promising initial findings in knockout animals and cell models, the role of the mitochondrial sirtuins requires further exploration in this context. This article is part of a Special Issue entitled Frontiers of mitochondrial research.  相似文献   

3.

Background

Atherosclerosis is one of the major complications of diabetes, which may result from insulin resistance via mitochondrial dysfunction. Although a strong association between insulin resistance and cardiovascular disease has been suggested, it is not clear yet whether stress-inducing factors damage mitochondria and insulin signaling pathway in cardiovascular tissues.

Methods

We investigated whether stress-induced mitochondrial dysfunction might alter the insulin/Akt signaling pathway in A10 rat vascular smooth muscle cells (VSMC).

Results

The treatment of oxidized low density lipoprotein (oxLDL) decreased ATP contents, mitochondrial respiration activity, mRNA expressions of OXPHOS subunits and IRS-1/2 and insulin-mediated phosphorylations of Akt and AMP-activated protein kinase (AMPK). Similarly, dideoxycytidine (ddC), the mtDNA replication inhibitor, or rotenone, OXPHOS complex I inhibitor, inhibited the insulin-mediated pAkt while increased pAMPK regardless of insulin. Reciprocally, an inhibitor of Akt, triciribine (TCN), decreased cellular ATP contents. Overexpression of Akt dominant positive reversed the oxLDL- or ddC-mediated ATP decrease but AMPK activator did not. Akt activation also normalized the aberrant VSMC migration induced by ddC.

Conclusions

Defective insulin signaling and mitochondrial function may collectively contribute to developing cardiovascular disease.

General significance

Akt may be a possible therapeutic target for treating insulin resistance-associated atherosclerosis.  相似文献   

4.

Background

The prevalence of type 2 diabetes is rapidly increasing world-wide and insulin resistance is central to the aetiology of this disease. The biology underpinning the development of insulin resistance is not completely understood and the role of impaired mitochondrial function in the development of insulin resistance is controversial.

Scope of review

This review will provide an overview of the major processes regulated by mitochondria, before examining the evidence that has investigated the relationship between mitochondrial function and insulin action. Further considerations aimed at clarifying some controversies surrounding this issue will also be proposed.

Major conclusions

Controversy on this issue is fuelled by our lack of understanding of some of the basic biological interactions between mitochondria and insulin regulated processes in the context of insults thought to induce insulin resistance. Aspects that have not yet been considered are tissue/cell type specific responses, mitochondrial responses to site-specific impairments in mitochondrial function and as yet uncharacterised retrograde signalling from mitochondria.

General significance

Further investigation of the relationship between mitochondria and insulin action could reveal novel mechanisms contributing to insulin resistance in specific patient subsets. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

5.

Background

In a previous study, we deleted three aldehyde dehydrogenase (ALDH) genes, involved in ethanol metabolism, from yeast Saccharomyces cerevisiae and found that the triple deleted yeast strain did not grow on ethanol as sole carbon source. The ALDHs were NADP dependent cytosolic ALDH1, NAD dependent mitochondrial ALDH2 and NAD/NADP dependent mitochondrial ALDH5. Double deleted strain ΔALDH2+ΔALDH5 or ΔALDH1+ΔALDH5 could grow on ethanol. However, the double deleted strain ΔALDH1+ΔALDH2 did not grow in ethanol.

Methods

Triple deleted yeast strain was used. Mitochondrial NAD dependent ALDH from yeast or human was placed in yeast cytosol.

Results

In the present study we found that a mutant form of cytoplasmic ALDH1 with very low activity barely supported the growth of the triple deleted strain (ΔALDH1+ΔALDH2+ΔALDH5) on ethanol. Finding the importance of NADP dependent ALDH1 on the growth of the strain on ethanol we examined if NAD dependent mitochondrial ALDH2 either from yeast or human would be able to support the growth of the triple deleted strain on ethanol if the mitochondrial form was placed in cytosol. We found that the NAD dependent mitochondrial ALDH2 from yeast or human was active in cytosol and supported the growth of the triple deleted strain on ethanol.

Conclusion

This study showed that coenzyme preference of ALDH is not critical in cytosol of yeast for the growth on ethanol.

General significance

The present study provides a basis to understand the coenzyme preference of ALDH in ethanol metabolism in yeast.  相似文献   

6.
7.

Purpose

Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance.

Methods and Results

DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨm) depolarization, exhibited attenuated insulin signaling and 2-deoxy-d-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H2O2), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨm depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H2O2-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨm depolarization and impaired 2-DG uptake, however they improved insulin signaling.

Conclusions

A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance.  相似文献   

8.

Background

Dicer is a multidomain ribonuclease III enzyme involved in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs); depletion of Dicer was found to impair the migration of endothelial cells.

Methods

siRNA transfection, cell migration assay, real-time RT–PCR, chromatin immunoprecipitation, Western blotting, ELISA, caspase-3 activity assay, and annexin-V–FITC assay were utilized.

Results

Knockdown of Dicer impairs the migratory capacity of HEK293T cells and induces fibronectin-1. The upregulation of fibronectin-1 is dependent on Egr1. Fibronectin-1/Dicer double-knockdown cells showed a marked increase in apoptosis compared with fibronectin-1 single knockdown cells.

Conclusions

Decreased Dicer expression induces fibronectin-1 expression via an Egr1-dependent manner.

General significance

Our data suggest that upregulation of fibronectin-1 protects Dicer knockdown HEK293T cells against apoptosis.  相似文献   

9.

Background

Chronic exposure to hyperglycaemic conditions has been shown to have detrimental effects on beta cell function. The resulting glucotoxicity is a contributing factor to the development of type 2 diabetes. The objective of this study was to combine a metabolomics approach with functional assays to gain insight into the mechanism by which glucotoxicity exerts its effects.

Methods

The BRIN-BD11 and INS-1E beta cell lines were cultured in 25 mM glucose for 20 h to mimic glucotoxic effects. PDK-2 protein expression, intracellular glutathione levels and the change in mitochondrial membrane potential and intracellular calcium following glucose stimulation were determined. Metabolomic analysis of beta cell metabolite extracts was performed using GC–MS, 1H NMR and 13C NMR.

Results

Conditions to mimic glucotoxicity were established and resulted in no loss of cellular viability in either cell line while causing a decrease in insulin secretion. Metabolomic analysis of beta cells following exposure to high glucose revealed a change in amino acids, an increase in glucose and a decrease in phospho-choline, n−3 and n−6 PUFAs during glucose stimulated insulin secretion relative to cells cultured under control conditions. However, no changes in calcium handling or mitochondrial membrane potential were evident.

Conclusions

Results indicate that a decrease in TCA cycle metabolism in combination with an alteration in fatty acid composition and phosphocholine levels may play a role in glucotoxicity induced impairment of glucose stimulated insulin secretion.

General significance

Alterations in certain metabolic pathways play a role in glucotoxicity in the pancreatic beta cell.  相似文献   

10.

Background

Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis.

Scope of review

A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways.

Major conclusions

PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis.

General significance

The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

11.

Background

We have previously demonstrated that mitochondrial bioenergetic deficits precede Alzheimer's pathology in the female triple transgenic Alzheimer's (3xTgAD) mouse model. Herein, we sought to determine the impact of reproductive senescence on mitochondrial function in the normal non-transgenic (nonTg) and 3xTgAD female mouse model of AD.

Methods

Both nonTg and 3xTgAD female mice at 3, 6, 9, and 12 months of age were sacrificed and mitochondrial bioenergetic profile as well as oxidative stress markers were analyzed.

Results

In both nonTg and 3xTgAD mice, reproductive senescence paralleled a significant decline in PDH, and Complex IV cytochrome c oxidase activity and mitochondrial respiration. During the reproductive senescence transition, both nonTg and 3xTgAD mice exhibited greater individual variability in bioenergetic parameters suggestive of divergent bioenergetic phenotypes. Following transition through reproductive senescence, enzymes required for long-chain fatty acid (HADHA) and ketone body (SCOT) metabolism were significantly increased and variability in cytochrome c oxidase (Complex IV) collapsed to cluster at a ∼ 40% decline in both the nonTg and 3xTgAD brain which was indicative of alternative fuel generation with concomitant decline in ATP generation.

Conclusions

These data indicate that reproductive senescence in the normal nonTg female brain parallels the shift to ketogenic/fatty acid substrate phenotype with concomitant decline in mitochondrial function and exacerbation of bioenergetic deficits in the 3xTgAD brain.

General significance

These findings provide a plausible mechanism for increased life-time risk of AD in postmenopausal women and suggest an optimal window of opportunity to prevent or delay decline in bioenergetics during reproductive senescence.  相似文献   

12.

Background

Diabetes is a metabolic syndrome that results in chronically increased blood glucose (hyperglycaemia) due to defects either in insulin secretion consequent to the loss of beta cells in the pancreas (type 1) or to loss of insulin sensitivity in target organs in the presence of normal insulin secretion (type 2). Long term hyperglycaemia can lead to a number of serious health-threatening pathologies, or complications, especially in the kidney, heart, retina and peripheral nervous system.

Scope of review

Here we summarise the current literature on the role of the mitochondria in complications associated with diabetes, and the limitations and potential of rodent models to explore new modalities to limit complication severity.

Major conclusions

Prolonged hyperglycaemia results in perturbation of catabolic pathways and in an over-production of ROS by the mitochondria, which in turn may play a role in the development of diabetic complications. Furthermore, current models don't offer a comprehensive recapitulation of these complications.

General significance

The onset of complications associated with type 1 diabetes can be varied, even with tightly controlled blood glucose levels. The potential role of inherited, mild mitochondrial dysfunction in accelerating diabetic complications, both in type 1 and 2 diabetes, remains unexplored. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

13.

Background

Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear.

Methods

We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level.

Results

Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling.

Conclusions

AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice.

General significance

These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity.  相似文献   

14.
NADP+-dependent isocitrate dehydrogenase (IDH) isozymes of a psychrophilic bacterium, Colwellia psychrerythraea strain 34H, were characterized. The coexistence of monomeric and homodimeric IDHs in this bacterium was confirmed by Western blot analysis, the genes encoding two monomeric (IDH-IIa and IDH-IIb) and one dimeric (IDH-I) IDHs were cloned and overexpressed in Escherichia coli, and the three IDH proteins were purified. Both of the purified IDH-IIa and IDH-IIb were found to be cold-adapted enzymes while the purified IDH-I showed mesophilic properties. However, the specific activities of IDH-IIa and IDH-IIb were lower even at low temperatures than that of IDH-I. Therefore, IDH-I was suggested to be important for the growth of this bacterium. The results of colony formation of E. coli transformants carrying the respective IDH genes and IDH activities in their crude extracts indicated that the expression of the IDH-IIa gene is cold-inducible in the E. coli cells.  相似文献   

15.
Staphylococcus aureus a natural inhabitant of nasopharyngeal tract mainly survives as biofilms and possess complete Krebs cycle which plays major role in its pathogenesis. This TCA cycle is regulated by Isocitrate dehydrogenase (IDH) we have earlier cloned, sequenced (HM067707), expressed and characterized this enzyme from S. aureus ATCC12600. We have observed only one type of IDH in all the strains of S. aureus which dictates the flow of carbon thereby controlling the virulence and biofilm formation, this phenomenon is variable among bacteria. Therefore in the present study comparative structural and functional analysis of IDH was undertaken. As the crystal structure of S. aureus IDH was not available therefore using the deduced amino sequence of complete gene the 3D structure of IDH was built in Modeller 9v8. The PROCHECK and ProSAweb analysis showed the built structure was close to the crystal structure of Bacillus subtilis. This structure when superimposed with other bacterial IDH structures exhibited extensive structural variations as evidenced from the RMSD values correlating with extensive sequential variations. Only 24% sequence identity was observed with both human NADP dependent IDHs (PDB: 1T09 and 1T0L) and the structural comparative studies indicated extensive structural variations with an RMSD values of 14.284Å and 10.073Å respectively. Docking of isocitrate to both human IDHs and S. aureus IDH structures showed docking scores of -11.6169 and -10.973 respectively clearly indicating higher binding affinity of isocitrate to human IDH.  相似文献   

16.
The R132H and R172K mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have neomorphic activity of generating 2‐hydroxyglutarate (2‐HG) which has been implicated in the oncogenesis. Although similarities in structure and enzyme activity for the two isotypic mutations have been suggested, the difference in their cellular localization and biochemical properties suggests differential effects on the metabolic oncogenesis. Using U87 cells transfected with either wild‐type (WT) and mutant (MT) IDH genes, the MT‐IDH1 and MT‐IDH2 cells were compared with NMR‐based metabolomics. When normalized with the respective WT‐IDH cells, the general metabolic shifts of MT‐IDH1 and IDH2 were almost opposite. Subsequent analysis with LC‐MS and metabolic pathway mapping showed that key metabolites in pentose phosphate pathway and tricarboxylic acid cycle are disproportionately altered in the two mutants, suggesting different activities in the key metabolic pathways. Notably, lactate level was lower in MT‐IDH2 cells which produced more 2‐HG than MT‐IDH1 cells, indicating that the Warburg effects can be overridden by the production of 2‐HG. We also found that the effect of a mutant enzyme inhibitor is mainly reduction of the 2‐HG level rather than general metabolic normalization. Overall, the metabolic alterations in the MT‐IDH1 and 2 can be different and seem to be commensurate with the degree of 2‐HG production.

  相似文献   


17.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

18.
19.
20.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号