首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Cellular senescence is an important tumor suppression process in vivo. Tamoxifen is a well-known anti-breast cancer drug; however, its molecular function is poorly understood. Here, we examined whether tamoxifen promotes senescence in breast cancer and colon cancer cells for the first time.

Main methods

Human breast cancer MCF-7, T47D, and MDA-MB-435 and colorectal cancer HCT116 cells were treated with tamoxifen. Cellular senescence was measured by SA-β-gal staining and based on the protein expression of p53 and p21Cip1/WAF1. The production of reactive oxygen species (ROS) was determined by staining with CM-H2DCFDA and dihydroethidium (DHE). CK2 activity was assessed with a specific peptide substrate.

Key findings

Tamoxifen promoted senescence phenotype and ROS generation in MCF-7 and HCT116 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), and the NADPH oxidase inhibitor, apocynin, almost completely abolished this event. Tamoxifen inhibited the catalytic activity of CK2. Overexpression of CK2α antagonized senescence mediated by tamoxifen, indicating that tamoxifen induced senescence via a CK2-dependent pathway. A well-known CK2 inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), also stimulated ROS production and senescence in MCF-7 cells. Finally, experiments using T47D (wild-type p53) and MDA-MB-435 (mutant p53) cell lines suggested that tamoxifen induces p53-independent ROS production as well as p53-dependent senescence in breast cancer cells.

Significance

These results demonstrate that tamoxifen promotes senescence through a ROS–p53–p21Cip1/WAF1 dependent pathway by inhibiting CK2 activity in breast cancer and colon cancer cells.  相似文献   

2.
Statins are cholesterol-lowing drugs with pleiotropic effects including cytotoxicity to cancer cells. In this study, we investigated the signaling pathways leading to apoptosis by simvastatin. Simvastatin induced cardinal features of apoptosis including increased DNA fragmentation, disruption of mitochondrial membrane potential (MMP), and increased caspase-3 activity by depleting isoprenoids in MethA fibrosarcoma cells. Interestingly, the simvastatin-induced apoptosis was accompanied by p53 stabilization involving Mdm2 degradation. The apoptosis was ameliorated in p53 knockdown clones of MethA cells as well as p53−/− HCT116 cells. The stabilized p53 protein translocated to mitochondria with Bax, and cytochrome c was released into cytosol. Moreover, knockdown or deficiency of p53 expression reduced both Bax translocation to mitochondria and MMP disruption in simvastatin-induced apoptosis. Taken together, these all indicate that stabilization and translocation of p53 to mitochondria is involved in Bax translocation to mitochondria in simvastatin-induced apoptosis.  相似文献   

3.
To investigate the mechanism by which nitric oxide (NO) induces cell death in colon cancer cells, we compared two types of colon cancer cells with different p53 status: HCT116 (p53 wild-type) cells and SW620 (p53-deficient) cells. We found that S-nitrosoglutathione (GSNO), the NO donor, induced apoptosis in both types of colon cancer cells. However, SW620 cells were much more susceptible than HCT116 cells to apoptotic death by NO. We investigated the role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 kinase on NO-induced apoptosis in both types of colon cancer cells. GSNO treatment effectively stimulated activation of the ERK1/2 and p38 kinase in both types of cells. In HCT116 cells, pretreatment with PD98059, an inhibitor of ERK1/2, or SB203580, an inhibitor of p38 kinase, had no marked effect on GSNO-induced apoptosis. However, in SW620 cells, SB203580 significantly reduced the NO-induced apoptosis, whereas PD098059 increases NO-induced apoptosis. Furthermore, we found evidence of cell cycle arrest of the G0/G1 phase in SW620 cells but not in HCT116 cells. Inhibition of ERK1/2 with PD098059, or of p38 kinase with SB203580, reduced the GSNO-induced cell cycle arrest of the G0/G1 phase in SW620 cells. We therefore conclude that NO-induced apoptosis in colon cancer cells is mediated by a p53-independent mechanism and that the pathways of ERK1/2 and p38 kinase are important in NO-induced apoptosis and in the cell cycle arrest of the G0/G1 phase.  相似文献   

4.
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53+/+ cells but increased it in HCT116 p53−/− cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.  相似文献   

5.
6.
7.
8.

Background

The p38α MAP kinase pathway is involved in inflammation, cell differentiation, growth, apoptosis and production of pro-inflammatory cytokines TNF-α and IL-1β. The overproduction of these cytokines plays an important role in cancer. The aim of this work was to design a peptide inhibitor on the basis of structural information of the active site of p38α.

Methods

A tetrapeptide, VWCS as p38α inhibitor was designed on the basis of structural information of the ATP binding site by molecular modeling. The inhibition study of peptide with p38α was performed by ELISA, binding study by Surface Plasmon Resonance and anti-proliferative assays by MTT and flow cytometry.

Results

The percentage inhibition of designed VWCS against pure p38α protein and serum of HNSCC patients was 70.30 and 71.5%, respectively. The biochemical assay demonstrated the KD and IC50 of the selective peptide as 7.22 × 10− 9 M and 20.08 nM, respectively. The VWCS as inhibitor significantly reduced viability of oral cancer KB cell line with an IC50 value of 10 μM and induced apoptosis by activating Caspase 3 and 7.

Conclusions

VWCS efficiently interacted at the ATP binding pocket of p38α with high potency and can be used as a potent inhibitor in case of HNSCC.

General significance

VWCS can act as an anticancer agent as it potentially inhibits the cell growth and induces apoptosis in oral cancer cell-line in a dose as well as time dependent manner. Hence, p38α MAP kinase inhibitor can be a potential therapeutic agent for human oral cancer.  相似文献   

9.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   

10.

Aims

Aberrant expression of microRNAs (miRNAs) results in alterations of various biological processes (e.g., cell cycle, cell differentiation, and apoptosis) and cell transformation. Altered miRNAs expression was associated with lung carcinogenesis and tumor progression. This study aimed to investigate the function and underlying molecular events of miR-517a-3p on regulation of lung cancer cell proliferation and invasion.

Main methods

Transfected miR-517a-3p mimics or inhibitors into 95D and 95C cells respectively, the effects of miR-517a-3p on lung cancer cell proliferation, migration, and invasion were detected. Bioinformatics software forecasted potential target genes of miR-517a-3p and dual luciferase reporter gene system and western blot verified whether miR-517a-3p regulates FOXJ3 expression directly.

Key findings

MiR-517a-3p was differentially expressed in lung cancer 95D and 95C cell lines that have different metastatic potential. Manipulation of miR-517a-3p expression changed lung cancer cell proliferation, migration and invasion capacity. MiR-517a-3p directly regulated FOXJ3 expression by binding to FOXJ3 promoter.

Significance

This study demonstrated that miR-517a-3p promoted lung cancer cell proliferation and invasion by targeting of FOXJ3 expression.  相似文献   

11.

Background

Diabetes mellitus is characterized by high blood glucose levels. Pancreatic ß cell death contributes to type 1 and type 2 diabetes. Akita mice, which harbor a human permanent neonatal diabetes-linked mutation (Cys96Tyr) in the insulin gene, are well established as an animal model of diabetes caused by pancreatic ß cell exhaustion. Mutant Insulin 2 protein (Ins2C96Y) induces endoplasmic reticulum (ER) stress and pancreatic ß cell death in Akita mice, although the molecular mechanism of InsC96Y-induced cell death remains unclear.

Methods

We investigate the mechanisms of Ins2C96Y-induced pancreatic ß cell death in vitro and in vivo, using p38 inhibitor (SB203580), MIN6 cell (pancreatic ß cell line), Akita mice and apoptosis signal-regulating kinase 1 (ASK1) knockout mice.

Results

The expression of InsC96Y activated the ASK1–p38 pathway. Deletion of ASK1 mitigated InsC96Y-induced pancreatic ß cell death and delayed the onset of diabetes in Akita mice. Moreover, p38 inhibitor suppressed InsC96Y-induced MIN6 cell death.

Conclusions

These findings suggest that ER stress-induced ASK1–p38 activation, which is triggered by the accumulation of InsC96Y, plays an important role in the pathogenesis of diabetes.

General significance

Pancreatic ß cell death caused by insulin overload appears to be involved in the pathogenesis of type 1 and type 2 diabetes. Inhibition of the ASK1–p38 pathway may be an effective therapy for various types of diabetes.  相似文献   

12.
13.
14.
15.
Gong X  Liu A  Ming X  Deng P  Jiang Y 《FEBS letters》2010,584(23):4711-4716
p53 plays a fundamental role in the maintenance of genome integrity after DNA damage, deciding whether cells repair and live, or die. However, the rules that govern its choice are largely undiscovered. Here we show that the functional relationship between p38 and p53 is crucial in defining the cell fate after DNA damage. Upon low dose ultraviolet (UV) radiation, p38 and p53 protect the cells from apoptosis separately. Conversely, they function together to favor apoptosis upon high dose UV exposure. Taken together, a UV-induced, dose-dependent interaction between p38 and p53 acts as a switch to determine cell fate.

Structured summary

MINT-8050838: p53 (uniprotkb:P02340) physically interacts (MI:0915) with p38 (uniprotkb:P47811) by anti bait coimmunoprecipitation (MI:0006)MINT-8050948: p53 (uniprotkb:P04637) physically interacts (MI:0915) with p38 (uniprotkb:P47811) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

16.

Background

This investigation clearly clarified the synthesized and antimitotic compound, 2-(3′-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38), addressing its target and precise mechanism of action. We hypothesized that HMJ-38 might sensitize apoptotic death of human oral carcinoma CAL 27 cells in vitro and inhibit xenograft tumor growth in vivo.

Methods

Cell viability was assessed utilizing MTT assay. HMJ-38-treated cells represented DNA fragmentation using agarose gel electrophoresis as further evidenced using TUNEL staining. Flow cytometric analyses, immunoblotting and quantitative RT-PCR were applied for protein and gene expression. Antitumor xenograft study was employed.

Results

HMJ-38 concentration- and time-dependently reduced viability of CAL 27 cells. The effect of intrinsic molecules was signalized during HMJ-38 exposure with disruption of ΔΨm, MPT pore opening and the release of various events from mitochondria undergoing cell apoptosis. HMJ-38 also markedly facilitated G2/M phase arrest. HMJ-38 stimulated the activation of CDK1 activity that modulated phosphorylation on Ser70 of Bcl-2-mediated mitotic arrest and apoptosis. HMJ-38 triggered intracellular Ca2 + release and activated related pivotal hallmarks of ER stress. HMJ-38 in nude mice bearing CAL 27 tumor xenografts decreased tumor growth. Furthermore, HMJ-38 enhanced caspase-3 gene expression and protein level in xenotransplanted tumors.

Conclusions

Early roles of mitotic arrest, unfolded protein response and mitochondria-dependent signaling contributed to apoptotic CAL 27 cell demise induced by HMJ-38. In in vivo experiments, HMJ-38 also efficaciously suppressed tumor volume in a xenotransplantation model.

General significance

This finding might fully support a critical event for HMJ-38 via induction of apoptotic machinery and ER stress against human oral cancer cells.  相似文献   

17.
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53+/+ cells, whereas HCT116 p53−/− cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53+/+ or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53−/− cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.  相似文献   

18.
19.

Background and Purpose

To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.

Materials and Methods

DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.

Results

The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation.

Conclusions

Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.  相似文献   

20.

Background

The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells.

Principal Findings

For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells.

Conclusions

Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号