首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fu  Yajing  Cheng  Yuanxiong  Wu  Yuntao 《中国病毒学》2020,35(3):266-271
Currently there is no effective antiviral therapy for SARS-CoV-2 infection, which frequently leads to fatal inflammatory responses and acute lung injury. Here, we discuss the various mechanisms of SARS-CoV-mediated inflammation. We also assume that SARS-CoV-2 likely shares similar inflammatory responses. Potential therapeutic tools to reduce SARS-CoV-2-induced inflammatory responses include various methods to block FcR activation. In the absence of a proven clinical FcR blocker, the use of intravenous immunoglobulin to block FcR activation may be a viable option for the urgent treatment of pulmonary inflammation to prevent severe lung injury. Such treatment may also be combined with systemic anti-inflammatory drugs or corticosteroids. However, these strategies, as proposed here, remain to be clinically tested for effectiveness.  相似文献   

2.
Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. Heterozygous mutations in the IDH1 occur in the majority of grade II and grade III gliomas and secondary glioblastomas and change the structure of the enzyme, which diminishes its ability to convert isocitrate (ICT) to α-ketoglutarate (α-KG) and provides it with a newly acquired ability to convert α-KG to R(-)-2-hydroxyglutarate [R(-)-2HG]. The IDH1 and IDH2 mutations are relevant to the progression of gliomas, the prognosis and treatment of the patients with gliomas harboring the mutation. In this paper, we reviewed these recent findings which were essential for the further exploration of human glioma cancer and might be responsible for developing a newer and more effective therapeutic approach in clinical treatment of this cancer.  相似文献   

3.
Recently, it has become apparent that reactive oxygen species (ROS) play many important roles in biological systems. For example, relationships between many diseases, such as cancer, cardiac infarction and arteriosclerosis, and ROS have been found. It is also well known that anti-oxidative agents scavenge ROS in biological systems, which in turn prevents ROS-related diseases. In our previous efforts to develop effective anti-oxidative compounds, we found that 1-O-hexyl-2,3,5-trimethylhydroquinone (HTHQ), which is a hydroquinone monoalkyl ether, is a potent anti-oxidative agent. Here, the scavenging activities of HTHQ against ROS, such as superoxide anion radicals, hydroxyl radicals, t-butyl peroxyl radicals and singlet oxygens, were examined by the ESR (electron spin resonance)-spin trapping method. Among ROS, HTHQ scavenged t-butyl peroxyl radicals most effectively (IC50=0.31±0.04 mM), showing approximately twice the activity of a well-known lipophilic anti-oxidant, d,l-α-tocopherol (IC50=0.67±0.06 mM), as measured by IC50 values defined as the 50% inhibition concentration of the generated ROS. In addition, a relatively stable ESR spectrum of free radicals due to HTHQ was observed during the reaction of HTHQ and t-butyl peroxyl radicals, indicating a direct reaction of HTHQ and t-butyl peroxyl radicals. The free radicals due to HTHQ were more stable than those derived from d,l-α-tocopherol under the same conditions examined. On the basis of these results, we evaluated anti-lipid-peroxidative activity of HTHQ in three systems involving micelles, liposomes and rat liver microsomes. HTHQ exhibited a similar anti-oxidative activity to that of d,l-α-tocopherol against lipid peroxidation in linolate micelles initiated by addition of Fe2+. On the other hand, HTHQ exhibited approximately 4.8-fold higher anti-lipid-peroxidation activity than that of d,l-α-tocopherol against the peroxidation in phosphatidylcholine liposomes initiated by addition of Fe2+. Furthermore, HTHQ scavenged the lipid peroxides at a rate approximately 150 times higher than that of d,l-α-tocopherol against Fe3+-ADP-induced lipid peroxidation in rat liver microsomes, indicating that the anti-lipid-peroxidation activity of HTHQ might be substantially elevated in biological systems in comparison with that of d,l-α-tocopherol. Based on these results, we suggest that HTHQ reacts directly with peroxyl radicals, such as t-butyl peroxyl radicals and peroxides of linolate micelles, liposomes and microsomes, by scavenging them to form stable free radicals. The resulting free radicals are presumed to be reduced by several reducing mechanisms in biological systems similarly to those of d,l-α-tocopherol, and then the lipid-peroxidation reactions will be terminated. In conclusion, HTHQ was found to be a potent anti-lipid-peroxidative compound and its anti-oxidation activity to be extremely elevated in biological systems, such as that of liver microsomes via the generation of stable free radicals. We propose that HTHQ is a potent anti-oxidative agent for use in future treatments for lipid-peroxide relevant diseases.  相似文献   

4.
Ezrin, radixin and moesin (ERM) proteins are more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Recent reviews extensively discuss their biological functions 1, 2, 3 and 4. In this review, we will first remind the main features of this family of proteins, which are known as linkers and regulators of plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.  相似文献   

5.
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus(HIV) infection. Thus more attention and research work regarding the innate immune system—especially the role of monocytes and macrophages during early HIV-1 infection—is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection,and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example,monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets(classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.  相似文献   

6.
7.
(E)-2-(2-(2-hydroxyphenyl)hydrazono)-1-phenylbutane-1,3-dione (H2L) was synthesized by azocoupling of diazonium salt of 2-hydroxyaniline with 1-phenylbutane-1,3-dione and characterized by IR, 1H and 13C NMR spectroscopies and X-ray diffraction analysis. In solution, H2L exists as a mixture of the enol-azo and hydrazone tautomeric forms and a decrease of temperature and of solvent polarity shifts the tautomeric balance to the hydrazone form. In the solid state, H2L crystallizes from ethanol-water in the monohydrate hydrazone form, as shown by X-ray analysis. The dissociation constants of H2L (pK1 = 5.98 ± 0.04, pK2 = 9.72 ± 0.03) and the stability constants of its copper(II) complex (log β1 = 11.01 ± 0.07, log β2 = 20.19 ± 0.08) were determined by the potentiometric method in aqueous-ethanol solution. The copper(II) complex [Cu2(μ-L)2]n was isolated in the solid state and found by X-rays to be a coordination polymer of a binuclear core with a distorted square pyramidal metal coordination geometry.  相似文献   

8.
Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.  相似文献   

9.
An Egyptian cultivar of potato (Solanum tuberosum L. cv. Kara) was grown in the field at two locations in northern Egypt: a ‘rural’ and a ‘suburban’ site, from October 2000 and November 2002. The antiozonant ethylenediurea (EDU) and the fungicide chlorothalonil (1,3‐benzenedicarbonitrile‐2,4,5,6 tetrachloroisophthalnitrile) were applied as a foliar spray to plants at both sites. It was found that foliar injury symptoms were reduced greatly in plants treated with EDU and/or chlorothalonil, and the yield of treated plants was higher than that of the untreated ones, with the EDU having a greater protection than chlorothalonil. Antiozonant (EDU) and fungicide (chlorothalonil) combination sprays were even more effective in reducing O3 injury. Moreover, the percentage of protection was higher in the rural area than in the suburban one, and this was associated with higher levels of O3 recorded in the rural area. The response to O3, EDU, and chlorothalonil of the leaf antioxidant scavenger system was examined. Antiozonant‐treated plants had the highest reduced glutathione/oxidised glutathione ratio. The results suggest that EDU and chlorothalonil do not act directly as antiozonant to inhibit O3 injury but act through maintaining some antioxidant enzymes during O3 exposure. To the best of knowledge, this is the first report demonstrating the marked enhancement of yield and plant oxidative enzymes by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment in the developing world.  相似文献   

10.
A series of ruthenium (II) complexes of formulae trans-[Ru(PPh3)2(L′H)2](ClO4)2 (1), [Ru(bpy)(L′H)2](ClO4)2 (2), [Ru(bpy)2(L′H)](ClO4)2 (3), cis-[Ru(DMSO)2(L′H)2]Cl2 (4), and [Ru(L′H)3](PF6)2 (5) (where L′H = 2-(2′-benzimidazolyl)pyridine) have been synthesized by reaction of the appropriate ruthenium precursor with 1,2-bis(2′-pyridylmethyleneimino)benzene (L). The complexes were characterized by elemental analyses, spectroscopic and electrochemical data. All the complexes were found to be diamagnetic and hence metal is in +2 oxidation state. The molecular structure of trans-[Ru(PPh3)2(L′H)2](ClO4)2 has been determined by the single crystal X-ray diffraction studies. The molecular structure shows that Ru(II) is at the center of inversion of an octahedron with N4P2 coordination sphere. The ligand acts as a bidentate N,N′donor. The electronic spectra of the complexes display intense MLCT bands in the visible region.Cyclic voltammetric studies show quasi-reversible oxidative response at 0.99-1.32 V (vs Ag/AgCl reference electrode) due to Ru(III)/Ru(II) couple.  相似文献   

11.
12.
Nasopharyngeal carcinoma (NpC) is a malignant disease associated with Epstein-Barr virus infection, and often diagnosed at an advanced stage. This significantly curtails patient survival. We hypothesize that a panel of biomarkers can be assembled to assess NpC incidence, early detection, and tumor progression during therapeutic intervention. Our thesis rests on a model of successfully predicting high-risk gliomas by means of a carefully crafted panel of molecular mitotic biomarkers (i.e., securin, survivin and MCM2). The strategy we propose holds strong promise for prevention and cure of NpC. The approach we propose seeks to identify certain biomarkers from viral materials, patient tissues and assessment of related diseases, whose signatures, taken together, will be endowed with some degree of congruency, or sense of a coordinated language (i.e., “votes”). Biomarker “voting” will then permit to outline a broad coordinated molecular map for the molecular and epigenetic characterization of each individual patient''s NpC tumor. We will draw on the process of contrasting biomarkers in health and disease, which rests on the auto-proteomic concept particularly relevant in high-risk cancer individuals, such as is the case for NpC. In brief we defend, current advances in human proteome profiling proffers the possibility of having individual baseline proteomic profiles using local body fluids (e.g., saliva, nasal secretions, sputum) or systemic fluids (e.g., plasma, serum, cerebrospinal fluid) to unravel a personalized molecular map for high-risk NpC individuals. Regular check-up will monitor for new or impending manifestations of NpC, and provide a secure assessment of incidence and early detection.  相似文献   

13.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

14.
We showed that temperature responses of dark respiration for foliage of Pinus radiata could be approximated by Arrhenius kinetics, whereby E 0 determines shape of the exponential response and denotes overall activation energy of respiratory metabolism. Reproducible and predictable deviation from strict Arrhenius kinetics depended on foliage age, and differed between R CO2 and R O2. Inhibition of oxygen reduction ( R O2) by cyanide (inhibiting COX) or SHAM (inhibiting AOX) resulted in reproducible changes of the temperature sensitivity for R O2, but did not affect R CO2. Enthalpic growth – preservation of electrons in anabolic products – could be approximated with knowledge of four variables: activation energies ( E 0) for both R CO2 and R O2, and basal rates of respiration at a low reference temperature ( R REF). Rates of enthalpic growth by P. radiata needles were large in spring due to differences between R REF of oxidative decarboxylation and that of oxygen reduction, while overall activation energies for the two processes were similar. Later during needle development, enthalpic growth was dependent on differences between E 0 for R CO2 as compared with R O2, and increased E 0( R O2) indicated greater contributions of cytochrome oxidase to accompany the switch from carbohydrate sink to source. Temperature-dependent increments in stored energy can be calculated as the difference between R CO2▵ H CO2 and R O2▵ H O2.  相似文献   

15.
16.
About 8000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such “omics” approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B.  相似文献   

17.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

18.
Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA.  相似文献   

19.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

20.
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号