首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Serum albumin is a major pharmacokinetic effector of drugs. To gain further insight into albumin binding chemistry, the crystal structures of six oncology agents were determined in complex with human serum albumin at resolutions of 2.8 to 2.0 Å: camptothecin, 9-amino-camptothecin, etoposide, teniposide, bicalutamide and idarubicin.

Methods

Protein crystal growth and low temperature X-ray crystallography

Results

These large, complex drugs are all bound within the subdomain IB binding region which can be described as a hydrophobic groove formed by α-helices h7, h8 and h9 covered by the extended polypeptide L1. L1 creates a binding cavity with two access sites, one between loop L1 and α-helices h7 and h8 (distal site: IBd) and the other between L1 and α-helix h9 (proximal site: IBp). Camptothecin (2.4 Å) and 9 amino camptothecin (2.0 Å) are clearly bound as the open lactone form (IBp). Idarubicin (2.8 Å) binds in a DNA like dimer complex via an intermolecular π stacking arrangement in IBd. Bicalutamide (2.4 Å) is bound in a folded intramolecular π stacking arrangement between two aromatic rings in IBd similar to idarubicin. Teniposide (2.7 Å) and etoposide (2.7 Å), despite small chemical differences, are bound in two distinctly different sites at or near IB. Teniposide is internalized via primarily hydrophobic interactions and spans through both openings (IBp-d). Etoposide is bound between the exterior of IB and IIA and exhibits an extensive hydrogen bonding network.

Conclusions

Subdomain IB is a major binding site for complex heterocyclic molecules.

General significance

The structures have important implications for drug design and development. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

2.

Background

Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site.

Methods

In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential.

Results

The final proteolytic step of PfSERA5 involves removal of a C-terminal ~ 6 kDa fragment that results in the generation of a catalytically active ~ 50 kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~ 6 kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5.

Conclusions

Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress.

General significance

These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~ 6 kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.  相似文献   

3.

Background

The diterpene cyclase ent-copalyl diphosphate synthase (CPS) catalyzes the first committed step in the biosynthesis of gibberellins. The previously reported 2.25 Å resolution crystal structure of CPS complexed with (S)-15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate (1) established the αβγ domain architecture, but ambiguities regarding substrate analog binding remained.

Method

Use of crystallization additives yielded CPS crystals diffracting to 1.55 Å resolution. Additionally, active site residues that hydrogen bond with D379, either directly or through hydrogen bonded water molecules, were probed by mutagenesis.

Results

This work clarifies structure–function relationships that were ambiguous in the lower resolution structure. Well-defined positions for the diphosphate group and tertiary ammonium cation of 1, as well as extensive solvent structure, are observed.

Conclusions

Two channels involving hydrogen bonded solvent and protein residues lead to the active site, forming hydrogen bonded “proton wires” that link general acid D379 with bulk solvent. These proton wires may facilitate proton transfer with the general acid during catalysis. Activity measurements made with mutant enzymes indicate that N425, which donates a hydrogen bond directly to D379, and T421, which hydrogen bonds with D379 through an intervening solvent molecule, help orient D379 for catalysis. Residues involved in hydrogen bonds with the proton wire, R340 and D503, are also important. Finally, conserved residue E211, which is located near the diphosphate group of 1, is proposed to be a ligand to Mg2 + required for optimal catalytic activity.

General significance

This work establishes structure–function relationships for class II terpenoid cyclases.  相似文献   

4.

Background

Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology.

Methods

Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX).

Results

In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2′ hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site.

General significance

These results call for a revision of both the “hinge-bending” model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism.  相似文献   

5.
6.

Background

Phototropins are UV-A/blue light receptor proteins with two LOV (Light-Oxygen-Voltage) sensor domains at their N terminus and a kinase domain at the C-terminus in photoautotrophic organisms. This is the first research report of a canonical phototropin from marine algae Ostreococcus tauri.

Methods

We synthesized core LOV1 (OtLOV1) domain-encoding portion of the phototropin gene of O. tauri, the domain was heterologously expressed, purified and assessed for its spectral properties and dark recovery kinetics by UV–Visible, fluorescence spectroscopy and mutational studies. Quaternary structure characteristics were studied by SEC and glutaraldehyde crosslinking.

Results

The absorption spectrum of OtLOV1 lacks the characteristic 361 nm peak shown by other LOV1 domains. It undergoes a photocycle with a dark state recovery time of approximately 30 min (τ = 300.35 s). Native OtLOV1 stayed as dimer in aqueous solution and the dimer formation was light and concentration independent. Mutating isoleucine at 43rd position to valine accelerated the dark recovery time by more than 10-fold. Mutating it to serine reduced sensitivity to blue light, but the dark recovery time remained unaltered. I43S mutation also destabilized the FMN binding to a great extent.

Conclusion

The OtLOV1 domain of the newly identified OtPhot is functional and the isoleucine at position 43 of OtLOV1 is the key residue responsible for fine-tuning the domain properties.

General significance

This is the first characterized LOV1 domain of a canonical phototropin from a marine alga and spectral properties of the domain are similar to that of the LOV1 domain of higher plants.  相似文献   

7.

Background

Glutathione transferases (GSTs) are members of a major family of detoxification enzymes. Here, we report the crystal structure of a sigma-class GST of Bombyx mori, bmGSTS1, to gain insight into the mechanism catalysis.

Methods

The structure of bmGSTS1 and its complex with glutathione were determined at resolutions of 1.9 Å and 1.7 Å by synchrotron radiation and the molecular replacement method.

Results

The three-dimensional structure of bmGSTS1 shows that it exists as a dimer and is similar in structure to other GSTs with respect to its secondary and tertiary structures. Although striking similarities to the structure of prostaglandin D synthase were also detected, we were surprised to find that bmGSTS1 can convert prostaglandin H2 into its E2 form. Comparison of bmGSTS1 with its glutathione complex showed that bound glutathione was localized to the glutathione-binding site (G-site). Site-directed mutagenesis of bmGSTS1 mutants indicated that amino acid residues Tyr8, Leu14, Trp39, Lys43, Gln50, Met51, Gln63, and Ser64 in the G-site contribute to catalytic activity.

Conclusion

We determined the tertiary structure of bmGSTS1 exhibiting prostaglandin E synthase activity.

General significance

These results are, to our knowledge, the first report of a prostaglandin synthase activity in insects.  相似文献   

8.

Background

The enzyme l-serine–glyoxylate aminotransferase (SGAT) from Hyphomicrobium methylovorum is a PLP-containing enzyme that catalyzes the conversion of l-serine and glyoxylate to hydroxypyruvate and glycine. The cloned enzyme expressed in Escherichia coli is isolated as a mixture of the E:PLP and E:PMP forms. The PLP form of the enzyme has a maximum absorbance at 413 nm.

Methods

Uv–visible spectra of SGAT were obtained using an HP-8453 diode array spectrophotometer in the absence and presence of substrates and substrate analogs. Pre-steady state kinetic studies were carried out using an OLIS rapid scanning spectrophotometer in the rapid scanning mode.

Results

Incubation of the enzyme with a saturating concentration D-serine leads to a shift in the 413 nm peak to 421 nm that is ascribed to the external aldimine. The reverse stereochemistry of D-serine does not allow for abstraction of the Cα proton by the ε-amine of the active site lysine residue leading to an abortive external aldimine intermediate. Pre-steady state studies pushing SGAT against d-serine leads to a rapid decrease in the 413 nm peak and an increase at ∼ 330 nm with an associated rate constant of 47 s− 1 at pH 7.6. This is followed by a slower decrease (0.26 s− 1) at 330 nm and an increase and shift of the 413 nm peak to 421 nm. The intermediate species that absorbs at ∼ 330 nm is attributed to the gem-diamine intermediate. The rate of the fast phase increases with pH and increase in rate is likely due to the deprotonation of an enzymatic group that accepts a proton from the α-amine of d-serine. In the presence of hydroxypyruvate and ammonia the enzyme spectra display an increase in absorbance at 521 nm that occurs on the order of minutes. The shape and position of the 521 nm species is consistent with a quinonoid intermediate.

General significance

The data suggest a non-enzymatic reaction between hydroxypyruvate and ammonia to form an imine which will be in equilibrium with the enamine. A mechanism is proposed by which the enamine reacts with the PLP form of SGAT to generate the stable highly conjugated quinonoid intermediate.  相似文献   

9.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

10.

Background

The p38α MAP kinase pathway is involved in inflammation, cell differentiation, growth, apoptosis and production of pro-inflammatory cytokines TNF-α and IL-1β. The overproduction of these cytokines plays an important role in cancer. The aim of this work was to design a peptide inhibitor on the basis of structural information of the active site of p38α.

Methods

A tetrapeptide, VWCS as p38α inhibitor was designed on the basis of structural information of the ATP binding site by molecular modeling. The inhibition study of peptide with p38α was performed by ELISA, binding study by Surface Plasmon Resonance and anti-proliferative assays by MTT and flow cytometry.

Results

The percentage inhibition of designed VWCS against pure p38α protein and serum of HNSCC patients was 70.30 and 71.5%, respectively. The biochemical assay demonstrated the KD and IC50 of the selective peptide as 7.22 × 10− 9 M and 20.08 nM, respectively. The VWCS as inhibitor significantly reduced viability of oral cancer KB cell line with an IC50 value of 10 μM and induced apoptosis by activating Caspase 3 and 7.

Conclusions

VWCS efficiently interacted at the ATP binding pocket of p38α with high potency and can be used as a potent inhibitor in case of HNSCC.

General significance

VWCS can act as an anticancer agent as it potentially inhibits the cell growth and induces apoptosis in oral cancer cell-line in a dose as well as time dependent manner. Hence, p38α MAP kinase inhibitor can be a potential therapeutic agent for human oral cancer.  相似文献   

11.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   

12.

Background

Glutathione transferase (GST) catalyzes a major step in the xenobiotic detoxification pathway. We previously identified a novel, unclassified GST that is upregulated in an insecticide-resistant silkworm (Bombyx mori) upon insecticide exposure. Here, we sought to further characterize this GST, bmGSTu, by solving and refining its crystal structure and identifying its catalytic residues.

Methods

The structure of wild-type bmGSTu was determined with a resolution of 2.1 Å by synchrotron radiation and molecular modeling. Potential catalytic residues were mutated to alanine by means of site-directed mutagenesis, and kinetic data determined for wild-type and mutated bmGSTu.

Results

We found that bmGSTu occurred as a dimer, and that, like other GSTs, each subunit displayed a G-site and an H-site in the active center. Bound glutathione could be localized at the G-site. Kinetic data of the mutated forms of bmGSTu show that Val55, Glu67, and Ser68 in the G-site are important for catalysis. Furthermore, the H-site showed some unique features.

Conclusions

This is the first study to our knowledge to elucidate the molecular conformation of this B. mori GST. Our results indicate that residues Val55, Glu67, and Ser68, as well as Tyr7 and Ser12, in the glutathione-binding region of bmGSTu are critical for catalytic function.

General Significance

Our results, together with our previous finding that bmGSTu was preferentially induced in an insecticide-resistant strain, support the idea that bmGSTu functions in the transformation of exogenous chemical agents. Furthermore, the unique features observed in bmGSTu may shed light on mechanisms of insecticide resistance.  相似文献   

13.

Background

Ureases are metalloenzymes involved in defense mechanisms in plants. The insecticidal activity of Canavalia ensiformis (jack bean) ureases relies partially on an internal 10 kDa peptide generated by enzymatic hydrolysis of the protein within susceptible insects. A recombinant version of this peptide, jaburetox, exhibits insecticidal, antifungal and membrane-disruptive properties. Molecular modeling of jaburetox revealed a prominent β-hairpin motif consistent with either neurotoxicity or pore formation.

Methods

Aiming to identify structural motifs involved in its effects, mutated versions of jaburetox were built: 1) a peptide lacking the β-hairpin motif (residues 61–74), JbtxΔ-β; 2) a peptide corresponding the N-terminal half (residues 1–44), Jbtx N-ter, and 3) a peptide corresponding the C-terminal half (residues 45–93), Jbtx C-ter.

Results

1) JbtxΔ-β disrupts liposomes, and exhibited entomotoxic effects similar to the whole peptide, suggesting that the β-hairpin motif is not a determinant of these biological activities; 2) both Jbtx C-ter and Jbtx N-ter disrupted liposomes, the C-terminal peptide being the most active; and 3) while Jbtx N-ter persisted to be biologically active, Jbtx C-ter was less active when tested on different insect preparations. Molecular modeling and dynamics were applied to the urease-derived peptides to complement the structure–function analysis.

Major conclusions

The N-terminal portion of the Jbtx carries the most important entomotoxic domain which is fully active in the absence of the β-hairpin motif. Although the β-hairpin contributes to some extent, probably by interaction with insect membranes, it is not essential for the entomotoxic properties of Jbtx.

General significance

Jbtx represents a new type of insecticidal and membrane-active peptide.  相似文献   

14.

Background

The deposition of aggregated β-amyloid peptide senile plaques and the accumulation of arginine within the astrocytes in the brain of an Alzheimer's patient are classic observations in the neuropathology of the disease. It would be logical, in the aetiology and pathogenesis, to investigate arginine-metabolising enzymes and their intimate association with amyloid peptides.

Methods

Neuronal nitric oxide synthase (nNOS) was isolated, purified and shown, through fluorescence quenching spectroscopy and fluorescence resonance energy transfer (FRET), to interact with structural fragments of Aβ1–40 and be catalytic towards amyloid fibril formation.

Results

Only one binding site on the enzyme was available for binding. Two amyloid peptide fragments of Aβ1–40 (Aβ17–28 and Aβ25–35) had Stern–Volmer values (KSV) of 0.111 μM−1 and 0.135 μM−1 indicating tight binding affinity to nNOS and easier accessibility to fluor molecules during binding. The polarity of this active site precludes binding of the predominantly hydrophobic amyloid peptide fragments contained within Aβ17–28 and within two glycine zipper motifs [G-X-X-X-G-X-X-X-G] [Aβ29–37] and bind to the enzyme at a site remote to the active region.

Conclusions

The interaction and binding of Aβ17–28 and Aβ25–35 to nNOS causes the movement of two critical tryptophan residues of 0.77 nm and 0.57 nm respectively towards the surface of the enzyme.

General significance

The binding of Aβ-peptide fragments with nNOS has been studied by spectrofluorimetry. The information and data presented should contribute towards understanding the mechanism for deposition of aggregated Aβ-peptides and fibrillogenesis in senile plaques in an AD brain.  相似文献   

15.

Background

Although rabbit antibodies are widely used in research, no structures of rabbit antigen-binding fragments (Fab) have been reported. M204 is a rabbit monoclonal antibody that recognizes a generic epitope that is common to prefibrillar amyloid oligomers formed from many different amyloidogenic sequences. Amyloid oligomers are widely suspected to be a primary causative agent of pathogenesis in several age-related neurodegenerative diseases, such as Alzheimer's disease. The detailed structure of these amyloid oligomers is not known nor is the mechanism for the recognition of the generic epitope by conformation-dependent monoclonal antibodies.

Method

As a first approach to understanding the mechanism of conformation-dependent antibody recognition, we have crystallized the Fab of M204.

Results

We have determined the structure of the Fab of M204 at 1.54 Å resolution. The crystal structure reveals details of the M204 antigen combining site and features unique to rabbit Fabs such as an interdomain disulfide bond on its light chain.

General significance

Based on the structural features of the antigen-combining site of the M204, we rule out a “steric zipper” formation, as found in numerous amyloid fibril structures, as a mechanism of antibody-antigen recognition. The details of the first rabbit immunoglobulin Fab structure might also be useful for exploiting the potential of rabbit monoclonal antibodies for the development of humanized rabbit antibodies as therapeutic agents.  相似文献   

16.

Introduction

Overweight and obesity are increasing at an alarming rate among older people. This is mainly because this population is predominantly sedentary. The aim of this study was to classify, according to the body mass index (BMI), a group of older active women and to evaluate the different basic physical abilities as a function of this.

Material and methods

The BMI and fitness were evaluated in 60 elderly active women (mean age: 66.14 ± 6.59 years) using the 2-minute step test, arm curl test, chair stand test, back scratch test, chair-sit and reach-test, flamenco test, and 8-foot up-and-go test.

Results

It was found that 52.23% of the women studied had a normal BMI and 47.76% were slightly overweight. There were no cases of obesity or underweight. Women with normal BMI had better values in all tests than overweight women. Significant differences were found in the flamenco test (P < .05), and 8-foot up-and-go test (P < .01).

Conclusions

Older women who usually do physical activity had a normal or slightly overweight BMI. It was also found that women with lower BMI have better resistance, flexibility, balance and strength.  相似文献   

17.

Background

TIM15/Zim17 in yeast and its mammalian ortholog Hep are Zn2 + finger (Cys4) proteins that assist mtHsp70 in protein import into the mitochondrial matrix.

Methods

Here we characterized the Zn2 + induced TIM15 folding integrating biophysical and computational approaches.

Results

TIM15 folding occurs from an essentially unstructured conformation to a Zn2 +-coordinated protein in a fast and markedly temperature-dependent process. Moreover, we demonstrate unambiguously that Zn2 + induced TIM15 folding is essential for its role as mtHsp70 chaperone since in the unstructured apo state TIM15 does not bind to mtHsp70 and is unable to prevent its aggregation. Molecular dynamics simulations help to understand the crucial role of Zn2 + in promoting a stable and functional 3D architecture in TIM15. It is shown that the metal ion, through its coordinating cysteine residues, can mediate relevant long-range effects with the interaction interface for mtHsp70 coupling thus folding and function.

Conclusions

Zn2 + induced TIM15 folding is essential for its function and likely occurs in mitochondrial matrix where high concentrations of Zn2 + were reported.

General significance

The combination of experimental and computational approaches presented here provide an integrated structural, kinetic and thermodynamic view of the folding of a mitochondrial zinc finger protein, which might be relevant to understand the organelle import of proteins sharing this fold.  相似文献   

18.

Background

Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.

Methods

Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.

Results

The enzyme only had one binding site. At 25 °C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2 nM, 0.058 nM− 1 [Ag]; and 43.5 nM, 0.052 nM− 1 [Au] and these decreased to 11.2 nM, 0.041 nM− 1 [Ag]; and 24.2 nM, 0.039 nM− 1 [Au] at 30 °C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11 nm [Ag] and 2.26 nm [Au] from a single surface tryptophan residue.

Conclusions

The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.

General significance

The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.  相似文献   

19.

Objective

To analyze the relationship between different test measuring explosive strength and functionality of active women participating in a leisure sport program in order to describe the caracteristics of health status and look for tools for diagnosing and monitoring degenerative process.

Methods

This study was conducted on 102 women physically active and without risk factors. Anthropometric, functional independence and explosive strength tests were applied.

Results

Mean age 60.08±5.35 years; body mass index: 26.81±3.91; percentage of fat: 52.45±4.75; percentage of muscle mass: 37.24±6.77; tests of functional independence: maximum speed (30 meters): 9.39±1.92 s; speed-agility (30 meters): 12.93±1.59 s, and dynamic balance (6 meters): 21.9±8.01 s. Explosive Strength (Bosco test): Squat Jump: 12.23±3.05 cm, Countermovement Jump: 13.18±3.04 cm and Countermovement Jump Arm swing: 14.80±4.01 cm.

Conclusion

The statistical relationships found between body composition, explosive strength and functionality tests, are important tools for diagnosing and monitoring, and could improve the intervention models on the elderly.  相似文献   

20.

Aims

The present study evaluated the carvacrol (CARV) effect on hyperalgesia and nociception induced by sarcoma 180 (S180) in mice.

Main methods

Carvacrol treatment (12.5–50 mg/kg s.c.) once daily for 15 days was started 24 h after injection of the sarcoma cells in the hind paw (s.c.). Mice were evaluated for mechanical sensitivity (von Frey), spontaneous and palpation-induced nociception, limb use and tumor growth on alternate days. CARV effects on the central nervous system were evaluated through immunofluorescence for Fos protein. Molecular docking studies also were performed to evaluate intermolecular interactions of the carvacrol and muscimol, as ligands of interleukin-10 and GABAA receptors.

Key findings

CARV was able to significantly reduce mechanical hyperalgesia and spontaneous and palpation-induced nociception, improve use paw, decrease the number of positively marked neurons in lumbar spinal cord and activate periaqueductal gray, nucleus raphe magnus and locus coeruleus. CARV also caused significant decreased tumor growth. Docking studies showed favorable interaction overlay of the CARV with IL-10 and GABAA.

Significance

Together, these results demonstrated that CARV may be an interesting option for the development of new analgesic drugs for the management of cancer pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号