首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
谷氧还蛋白系统及其对细胞氧化还原态势的调控   总被引:1,自引:0,他引:1  
细胞内氧化还原调控主要是由谷氧还蛋白系统和硫氧还蛋白系统完成。谷氧还蛋白属于硫氧还蛋白超家族,广泛分布在各种生物体内。作为一种巯基转移酶,它能够催化巯基.二硫键交换反应或者还原蛋白质谷胱甘肽二硫化物,以维持胞内的氧化还原态势。谷氧蛋白系统参与氧化胁迫、蛋白修饰、信号转导、细胞调亡和细胞分化等多种生物过程。对其体内作用靶蛋白的研究,有助于阐明谷氧还蛋白在整个细胞氧化还原网络的重要调控作用。  相似文献   

3.
Using redox proteomics techniques to characterize the thiol status of proteins in human T lymphocytes, we identified cyclophilin A (CypA) as a specifically oxidized protein early after mitogen activation. CypA is an abundantly expressed cytosolic protein, target of the immunosuppressive drug cyclosporin A (CsA), for which a variety of functions has been described. In this study, we could identify CypA as a protein undergoing glutathionylation in vivo. Using MALDI-MS we identified Cys52 and Cys62 as targets of glutathionylation in T lymphocytes, and, using bioinformatic tools, we defined the reasons for the susceptibility of these residues to the modification. In addition, we found by circular dichroism spectroscopy that glutathionylation has an important impact on the secondary structure of CypA. Finally, we suggest that glutathionylation of CypA may have biological implications and that CypA may play a key role in redox regulation of immunity.  相似文献   

4.
Protein S-glutathionylation is emerging as a central oxidation that regulates redox signaling and biological processes linked to diseases. In recent years, the field of protein S-glutathionylation has expanded by developing biochemical tools for the identification and functional analyses of S-glutathionylation, investigating knockout mouse models, and developing and evaluating chemical inhibitors for enzymes involved in glutathionylation. This review will highlight recent studies of two enzymes, glutathione transferase omega 1 (GSTO1) and glutaredoxin 1 (Grx1), especially introducing their glutathionylation substrates associated with inflammation, cancer, and neurodegeneration and showcasing the advancement of their chemical inhibitors. Lastly, we will feature protein substrates and chemical inducers of LanC-like protein (LanCL), the first enzyme in protein C-glutathionylation.  相似文献   

5.
Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 and thioredoxin reductase 1 (TrxR1) to be significantly decreased. The human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans were used as model systems to explore the potential protective effects of the redox proteins against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 6-OHDA is highly prone to oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased expression of Trx1, TrxR1, Grx1, and Grx2, and small interfering RNA for these genes significantly increased the cytotoxic effects exerted by the 6-OHDA neurotoxin. Evaluation of the dopaminergic neurons in C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, with significantly increased neuronal degradation. Importantly, both the Trx and the Grx systems were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important for neuronal survival in dopamine-induced cell death.  相似文献   

6.
Liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) demonstrated that glutathionyl hemoglobin (Hb) levels are increased in patients with diabetes, hyperlipidemia, uremia and Friedreich's ataxia. Glutathionylation of Hb is enhanced by oxidative stress. High performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) have also been developed for the quantification of glutathionyl Hb. Glutathionyl-lens proteins were detected in uremic patients and cataractous aged subjects. Glutathionylation of numerous enzymes is induced by oxidative stress, reduces their catalytic activities and may be involved in protection from the damaging effects of oxidative agents. Thioredoxin, glutaredoxin (thioltransferase) and protein disulfide isomerase are the key enzymes in controlling cellular oxidative stress that catalyze reduction of glutathionyl protein disulfide bonds. Thus, protein glutathionylation is closely associated with oxidative stress.  相似文献   

7.
Protein S-glutathionylation, the reversible formation of a mixed-disulfide between glutathione and protein thiols, is involved in protection of protein cysteines from irreversible oxidation, but also in protein redox regulation. Recent studies have implicated S-glutathionylation as a cellular response to oxidative/nitrosative stress, likely playing an important role in signaling. Considering the potential importance of glutathionylation, a number of methods have been developed for identifying proteins undergoing glutathionylation. These methods, ranging from analysis of purified proteins in vitro to large-scale proteomic analyses in vivo, allowed identification of nearly 200 targets in mammals. By contrast, the number of known glutathionylated proteins is more limited in photosynthetic organisms, although they are severely exposed to oxidative stress. The aim of this review is to detail the methods available for identification and analysis of glutathionylated proteins in vivo and in vitro. The advantages and drawbacks of each technique will be discussed as well as their application to photosynthetic organisms. Furthermore, an overview of known glutathionylated proteins in photosynthetic organisms is provided and the physiological importance of this post-translational modification is discussed.  相似文献   

8.
The existence of natural peroxiredoxin-glutaredoxin hybrid enzymes in several bacteria is in line with previous findings indicating that poplar peroxiredoxin II can use glutaredoxin as an electron donor. This peroxiredoxin remains however unique since it also uses thioredoxin with a quite good efficiency. Based on the existing fusions, we have created artificial enzymes containing a poplar peroxiredoxin module linked to glutaredoxin or thioredoxin modules. The recombinant fusion enzymes folded properly into non-covalently bound homodimers or homotetramers. Two of the three protein constructs exhibit peroxidase activity, a reaction where the two modules need to function together, but they also display enzymatic activities specific of each module. In addition, mass spectrometry analyses indicate that the Prx module can be both glutathiolated or overoxidized in vitro. This is discussed in the light of the Prx reactivity.  相似文献   

9.
S-glutathionylation, the formation of mixed disulfides of glutathione with cysteine residues of proteins, is a broadly observed physiological modification that occurs in response to oxidative stress. Since cysteine residues are particularly susceptible to oxidative modification by reactive oxygen species, S-glutathionylation can protect proteins from irreversible oxidation. In this study, we show that the kinase activity of the non-receptor tyrosine kinase c-Abl is inhibited by in vitro thiol modification; specifically, the cysteine residues of c-Abl are modified by S-glutathionylation and by thiol alkylating agents such as 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid and N-ethylmaleimide. Modification of cysteine residues of c-Abl tyrosine kinase using glutathione disulfide and thiol alkylating agents corresponds to a concomitant loss of kinase activity. We also demonstrate that S-glutathionylation of c-Abl can be reversed using a physiological system involving glutaredoxin and this reversal restores c-Abl kinase activity. To our knowledge, these are the first data to show S-glutathionylation of c-Abl, and this modification may represent a mechanism of regulation of c-Abl kinase activity in cells under oxidative stress.  相似文献   

10.

Background

Oxidoreductases of the thioredoxin family of proteins have been thoroughly studied in numerous cellular and animal models mimicking human diseases. Despite of their well documented role in various disease conditions, no systematic information on the presence of these proteins is available.

Methods

Here, we have systematically analyzed the presence of some of the major constituents of the glutaredoxin (Grx)-, peroxiredoxin (Prx)-, and thioredoxin (Trx)-systems, i.e. Grx1, Grx2, Grx3 (TXNL-2/PICOT), Grx5, nucleoredoxin (Nrx), Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, thioredoxin reductase 1 (TrxR1), Trx2, TrxR2, and γ-glutamyl cysteine synthetase (γ-GCS) in various tissues of the mouse using immunohistochemistry.

Results

The identification of the Trx family proteins in the central nervous system, sensory organs, digestive system, lymphatic system, reproductive system, urinary system, respiratory system, endocrine system, skin, heart, and muscle revealed a number of significant differences between these proteins with respect to their distribution in these tissues.

Conclusion

Our results imply more specific functions and interactions between the proteins of this family than previously assumed.

General significance

Crucial functions of Trx family proteins have been demonstrated in various disease conditions. A detailed overview on their distribution in various tissues will be helpful to fully comprehend their potential role and the interactions of these proteins in the most thoroughly studied model for human diseases—the laboratory mouse.This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.  相似文献   

11.
12.

Background

The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellular response to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronal damage and glial reaction induced by a hypoxic–ischemic episode is highly related to glutamate excitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia–ischemia in the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death, however, no comprehensive study on the localization of the redox proteins in the rat CNS was available.

Methods

The aim of this work was to study the distribution of the following proteins of the thioredoxin and glutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2, Txnip, Grx1, Grx2, Grx3, Grx5, and γ-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We have focused on areas most sensitive to a hypoxia–ischemic insult: Cerebellum, striatum, hippocampus, spinal cord, substantia nigra, cortex and retina.

Results and conclusions

Previous studies implied that these redox proteins may be distributed in most cell types and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family.

General significance

We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia–ischemia insults and other disorders of the CNS.This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.  相似文献   

13.
Brain and liver mitochondria isolated by a discontinuous Percoll gradient show an oxidized redox environment, which is reflected by low GSH levels and high GSSG levels and significant glutathionylation of mitochondrial proteins as well as by low NAD(P)H/NAD(P) values. The redox potential of brain mitochondria isolated by a discontinuous Percoll gradient method was calculated to be -171 mV based on GSH and GSSG concentrations. Immunoblotting and LC/MS/MS analysis revealed that succinyl-CoA transferase and ATP synthase (F(1) complex, α-subunit) were extensively glutathionylated; S-glutathionylation of these proteins resulted in a substantial decrease of activity. Supplementation of mitochondria with complex I or complex II respiratory substrates (malate/glutamate or succinate, respectively) increased NADH and NADPH levels, resulting in the restoration of GSH levels through reduction of GSSG and deglutathionylation of mitochondrial proteins. Under these conditions, the redox potential of brain mitochondria was calculated to be -291 mV. Supplementation of mitochondria with respiratory substrates prevented GSSG formation and, consequently, ATP synthase glutathionylation in response to H(2)O(2) challenges. ATP synthase appears to be the major mitochondrial protein that becomes glutathionylated under oxidative stress conditions. Glutathionylation of mitochondrial proteins is a major consequence of oxidative stress, and respiratory substrates are key regulators of mitochondrial redox status (as reflected by thiol/disulfide exchange) by maintaining mitochondrial NADPH levels.  相似文献   

14.
NADPH oxidase-derived reactive oxygen species (ROS) have been reported to activate NLRP3 inflammasomes resulting in podocyte and glomerular injury during hyperhomocysteinemia (hHcys). However, the mechanism by which the inflammasome senses ROS is still unknown in podocytes upon hHcys stimulation. The current study explored whether thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the antioxidant thioredoxin and ROS sensor, mediates hHcys-induced NLRP3 inflammasome activation and consequent glomerular injury. In cultured podocytes, size exclusion chromatography and confocal microscopy showed that inhibition of TXNIP by siRNA or verapamil prevented Hcys-induced TXNIP protein recruitment to form NLRP3 inflammasomes and abolished Hcys-induced increases in caspase-1 activity and IL-1β production. TXNIP inhibition protected podocytes from injury as shown by normal expression levels of podocyte markers, podocin and desmin. In vivo, adult C57BL/6J male mice were fed a folate-free diet for 4 weeks to induce hHcys, and TXNIP was inhibited by verapamil (1 mg/ml in drinking water) or by local microbubble-ultrasound TXNIP shRNA transfection. Evidenced by immunofluorescence and co-immunoprecipitation studies, glomerular inflammasome formation and TXNIP binding to NLRP3 were markedly increased in mice with hHcys but not in TXNIP shRNA-transfected mice or those receiving verapamil. Furthermore, TXNIP inhibition significantly reduced caspase-1 activity and IL-1β production in glomeruli of mice with hHcys. Correspondingly, TXNIP shRNA transfection and verapamil attenuated hHcys-induced proteinuria, albuminuria, glomerular damage, and podocyte injury. In conclusion, our results demonstrate that TXNIP binding to NLRP3 is a key signaling mechanism necessary for hHcys-induced NLRP3 inflammasome formation and activation and subsequent glomerular injury.  相似文献   

15.
Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.  相似文献   

16.
Glutathionylation of hemoglobin (Hb) was studied by incubation of intact human erythrocytes with 1 mM tert-butylhydroperoxide (tBHP). Electrophoresis of the membranes showed a time dependent increase of membrane-bound Hb alpha chain until 10 min, and immunoblotting study showed that membrane-bound Hb alpha chain reacted with anti-glutathione antibody only after 10 min. Concomitant with the Hb alpha chain, membrane associated actin, spectrin, and glyceraldehyde 3-phosphate dehydrogenase reacted with the antibody. Cytosolic Hb of the control erythrocytes reacted with anti-glutathione antibody. Together with our previous paper, the present study indicates that at least three different types of glutathionylation of Hb can exist in erythrocytes. The first type is a mixed disulfide bond between reduced glutathione (GSH) and normal Hb. The second type is a disulfide bond between the cysteine 93 of metHb beta chain and oxidized glutathione (GSSG), and the third type is a disulfide bond between the other cysteine residues of metHb alpha chain and/or metHb beta chain and GSSG.  相似文献   

17.
In most organisms, thioredoxin (Trx) and/or glutathione (GSH) systems are essential for redox homeostasis and deoxyribonucleotide synthesis. Platyhelminth parasites have a unique and simplified thiol-based redox system, in which the selenoprotein thioredoxin-glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase domains, is the sole enzyme supplying electrons to oxidized glutathione (GSSG) and Trx. This enzyme has recently been validated as a key drug target for flatworm infections. In this study, we show that TGR possesses GSH-independent deglutathionylase activity on a glutathionylated peptide. Furthermore, we demonstrate that deglutathionylation and GSSG reduction are mediated by the Grx domain by a monothiolic mechanism and that the glutathionylated TGR intermediate is resolved by selenocysteine. Deglutathionylation and GSSG reduction via Grx domain, but not Trx reduction, are inhibited at high [GSSG]/[GSH] ratios. We found that Trxs (cytosolic and mitochondrial) provide alternative pathways for deglutathionylation and GSSG reduction. These pathways are operative at high [GSSG]/[GSH] and function in a complementary manner to the Grx domain-dependent one. Despite the existence of alternative pathways, the thioredoxin reductase domains of TGR are an obligate electron route for both the Grx domain- and the Trx-dependent pathways. Overall, our results provide an explanation for the unique array of thiol-dependent redox pathways present in parasitic platyhelminths. Finally, we found that TGR is inhibited by 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), giving further evidence for NO donation as a mechanism of action for oxadiazole N-oxide TGR inhibitors. Thus, NO donors aimed at TGR could disrupt the entire redox homeostasis of parasitic flatworms.  相似文献   

18.
The observation that purified yeast glutamine synthetase is rapidly inactivated in a thiol-containing buffer yet retains activity in crude extracts containing the same thiol led to our discovery of an enzyme that protects against oxidation in a thiol-containing system. This novel antioxidant enzyme was shown to reduce hydroperoxides and, more recently, peroxynitrite with the use of electrons provided by a physiological thiol like thioredoxin. It defined a family of proteins, present in organisms from all kingdoms, that was named peroxiredoxin (Prx). All Prx enzymes contain a conserved Cys residue that undergoes a cycle of peroxide-dependent oxidation and thiol-dependent reduction during catalysis. Mammalian cells express six isoforms of Prx (Prx I to VI), which are classified into three subgroups (2-Cys, atypical 2-Cys, and 1-Cys) based on the number and position of Cys residues that participate in catalysis. The relative abundance of Prx enzymes in mammalian cells appears to protect cellular components by removing the low levels of peroxides produced as a result of normal cellular metabolism. During catalysis, the active site cysteine is occasionally overoxidized to cysteine sulfinic acid. Contrary to the general belief that oxidation to the sulfinic state is an irreversible process in cells, studies on the fate of the overoxidized Prx species revealed a mechanism by which the catalytically active thiol form is recovered. This sulfinic reduction is a slow, ATP-dependent process that is specific to 2-Cys Prx isoforms. This reversible overoxidation may represent an adaptation unique to eukaryotic cells that accommodates the intracellular messenger function of H2O2, but experimental validation of such speculation is yet to come.  相似文献   

19.
Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis.  相似文献   

20.
The disruption of redox control, i.e., oxidative stress, is one of the most destructive causes of ischemia-reperfusion (IR) injury. Thioredoxin (Trx) family proteins play a major role in the cellular response to oxidative stress. Here, we systematically investigated the levels and tissue distribution of 15 members of this family (Trx and TrxR 1 and 2, Nrx, Prx 1-6, and Grx 1-3 and 5) in mouse kidneys after induction of IR by comparing control, clamped, and contralateral organs. After IR, levels of various redoxins were quantified. Immunohistochemical analysis revealed segment-specific alterations induced by the ischemic insult. Grx2, Prx3, and Prx6 were highly expressed in proximal tubule cells. Overexpression of these proteins in HEK293 and HeLa cells subjected to hypoxia and reoxygenation revealed higher survival and proliferation rates and lower oxidative damage compared to controls. Furthermore, we report for the first time the accumulation of Grx1 at the apical side of distal convoluted cells and the specific secretion of Grx1 into the urine after IR. The differences in both the basal equipment and the segment-specific responses of the antioxidant proteins may contribute to the distinct susceptibilities and regeneration processes of the various segments of the nephron to the IR insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号