首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Due to increasing antibiotics resistance, antimicrobial peptides (AMPs) are receiving increased attention. Pseudomonas aeruginosa is a major pathogen in this context, involved, e.g., in keratitis and wound infections. Novel bactericidal agents against this pathogen are therefore needed.

Methods

Bactericidal potency was monitored by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was probed by hemolysis. Mechanistic information was obtained from assays on peptide-induced vesicle disruption and lipopolysaccharide binding.

Results

End-tagging by hydrophobic amino acids yields increased potency of AMPs against P. aeruginosa, irrespective of bacterial proteinase production. Exemplifying this by two peptides from kininogen, GKHKNKGKKNGKHNGWK and KNKGKKNGKH, potency increased with tag length, correlating to more efficient bacterial wall and vesicle rupture, and to more pronounced P. aeruginosa lipopolysaccharide binding. End-tag effects remained at high electrolyte concentration and in the presence of plasma or anionic macromolecular scavengers. The tagged peptides displayed stability against P. aeruginosa elastase, and were potent ex vivo, both in a contact lens model and in a skin wound model.

General significance

End-tagging, without need for post-peptide synthesis modification, may be employed to enhance AMP potency against P. aeruginosa at maintained limited toxicity.  相似文献   

2.

Aims

Excessive use of antibiotics has led to evolutionary adaptation resulting in emergence of multidrug resistance in P. aeruginosa. The aim of the present study was oriented towards exploiting zingerone (active component of ginger) in making P. aeruginosa more susceptible to killing with antibiotics, humoral/cellular defences and studying its underlying mechanism.

Main method

Effect of zingerone treatment on antibiotic susceptibility, serum, and phagocytic killing of P. aeruginosa was studied. The underlying mechanism was evaluated in terms of cell surface hydrophobicity, alginate and LPS production. TNF-α and MIP-2 cytokine production by mouse macrophages was also checked. Structural analysis was carried out using scanning electron microscopy (SEM) and liquid chromatography-mass spectrometry (LC-MS) analysis.

Key findings

Zingerone treated cells showed increased susceptibility to variety of antibiotics, serum as well as macrophages (p < 0.05). Zingerone treatment significantly reduced cell surface hydrophobicity, alginate and LPS production (p < 0.05). Zingerone treated cells showed significant decrease in TNF-α and MIP-2 cytokine production as compared to non-treated cells. Coupled with this, reduction in the production of extracellular protective matrix and modulation of chemical structure of LPS was also observed by scanning electron microscopy and liquid chromatography-mass spectrometric (LC-MS) respectively. Zingerone significantly influence surface structure of P. aeruginosa which contributes towards enhanced susceptibility to antibiotics and innate immune system.

Significance

Use of phytochemicals may prove to be a novel therapeutic approach by enhancing susceptibility of pathogenic microorganisms to antibiotics and immune system. Zingerone has proved to be one such agent which can be employed as a potential anti-virulent drug candidate against P. aeruginosa infections.  相似文献   

3.

Background

The semi-synthetic ent-kaurane 15-ketoatractyligenin methyl ester (SC2017) has been previously reported to possess high antiproliferative activity against several solid tumor-derived cell lines. Our study was aimed at investigating SC2017 tumor growth-inhibiting activity and the underlying mechanisms in Jurkat cells (T-cell leukemia) and xenograft tumor models.

Methods

Cell viability was evaluated by MTT assay. Cell cycle progression, reactive oxygen species (ROS) elevation and apoptotic hallmarks were monitored by flow cytometry. Inhibition of thioredoxin reductase (TrxR) by biochemical assays. Levels and/or activation status of signaling proteins were assessed by western blotting. Xenograft tumors were generated with HCT 116 colon carcinoma cells.

Results

SC2017 displayed cell growth-inhibiting activity against Jurkat cells (half maximal inhibitory concentration values (IC50) < 2 μM), but low cell-killing potential in human peripheral blood mononuclear cells (PBMC). The primary response of Jurkat cells to SC2017 was an arrest in G2 phase followed by caspase-dependent apoptosis. Inhibition of PI3K/Akt pathway and TrxR activity by SC2017 was demonstrated by biochemical and pharmacological approaches. At least, SC2017 was found to inhibit xenograft tumor growth.

Conclusions

Our results demonstrate that SC2017 inhibits tumor cell growth in in vitro and in vivo models, but displays moderate toxicity against PBMC. We also demonstrate that SC2017 promotes caspase-dependent apoptosis in Jurkat cells by affecting Akt activation status and TrxR functionality.

General significance

Our observations suggest the semi-synthetic ent-kaurane SC2017 as a promising chemotherapeutic compound. SC2017 has, indeed, shown to possess tumor growth inhibiting activity and be able to counteract PI3K/Akt and Trx system survival signaling.  相似文献   

4.

Background

Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs.

Methods

Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR.

Results

TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix.

Conclusion

Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides.

General significance

The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.  相似文献   

5.

Aims

The present study is designed to evaluate the in vitro and in vivo bactericidal and immunomodulating activities of hesperidin (HES) and ellagic acid (EA) against Aeromonas hydrophila. A hydrophila, an uncommon human pathogen, can cause invasive infections in immunocompromised individuals and common clinical presentations in acute gastrointestinal illness, soft-tissue infections and sepsis. The antimicrobial activities of medicinal plants against A. hydrophila have received only cursory attention.

Methods

We examined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values in vitro. Moreover, the effects of HES and EA against bacterial colonization were studied in vivo. Also, humoral immune response was tested against A. hydrophila-LPS or A. hydrophila-ECP antigen preparations and the intestinal histopathological alterations were studied.

Results

Data revealed that the treatments with HES and EA each had antimicrobial activities against A. hydrophila. Both HES and EA treatments significantly increased anti-LPS IgM levels and reduced anti-LPS and anti-ECP IgA levels to their normal values in comparison to the infected group, which recorded significantly elevated levels two week post-infection. In conclusion, the present data suggest that HES and EA have antimicrobial and immunomodulating activities against murine A. hydrophila infections.

Significant

These data warrant clinical studies to delineate HES and EA roles in human infectious diseases.  相似文献   

6.

Background

Sterile larvae—maggots of the green bottle blowfly Lucilia sericata are employed as a treatment tool for various types of chronic wounds. Previous studies reported that excretions/secretions (ES) of the sterile larvae could prevent and remove the biofilms of various species of bacteria. In the present study we assessed the effect of ES from the larvae pretreated with Pseudomonas aeruginosa on the bacteria biofilms.

Methods and Findings

We investigated the effects of ES from the maggot pretreated with P. aeruginosa on the biofilms using microtitre plate assays and on bactericidal effect using the colony-forming unit (CFU) assay. The results showed that only 30 µg of the ES from the pretreated maggots could prevent and degrade the biofilm of P. aeruginosa. However, the CFU count of P. aeruginosa was not decrease when compared to the ES from non pretreated maggots in this study condition. It is suggested that the ES from the pretreated maggot was more effective against biofilm of P. aeruginosa than sterile maggot ES.

Conclusions

Our results showed that the maggot ES, especially the bacteria-pretreated larva ES may provide a new insight into the treatment tool of the bacterial biofilms.  相似文献   

7.

Background

Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle. Recently, sphingolipid metabolism inhibitors were used to reduce infection. Cystic fibrosis (CF) is characterized by a hyper-inflammation and an excessive innate immune response, which fails to evolve into adaptive immunity and to eradicate infection. Chronic infections result in lung damage and patient morbidity. Notably, ceramide content in mucosa airways is higher in CF mouse models and in patients than in control mice or healthy subjects.

Methods

The therapeutic potential of myriocin, an inhibitor of the sphingolipid de novo synthesis rate limiting enzyme (Serine Palmitoyl Transferase, SPT),was investigated in CF cells and mice models.

Results

We treated CF human respiratory epithelial cells with myriocin, This treatment resulted in reduced basal, as well as TNFα-stimulated, inflammation. In turn, TNFα induced an increase in SPT in these cells, linking de novo synthesis of ceramide to inflammation. Furthermore, myriocin-loaded nanocarrier, injected intratrachea prior to P. aeruginosa challenge, enabled a significant reduction of lung infection and reduced inflammation.

Conclusions

The presented data suggest that de novo ceramide synthesis is constitutively enhanced in CF mucosa and that it can be envisaged as pharmacological target for modulating inflammation and restoring effective innate immunity against acute infection.

General significance

Myriocin stands as a powerful immunomodulatory agent for inflammatory and infectious diseases.  相似文献   

8.

Background

Bacteria are well known to form dormant persister cells that are tolerant to most antibiotics. Such intrinsic tolerance also facilitates the development of multidrug resistance through acquired mechanisms. Thus persister cells are a promising target for developing more effective methods to control chronic infections and help prevent the development of multidrug-resistant bacteria. However, control of persister cells is still an unmet challenge.

Methodology/Principal Findings

We show in this report that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can restore the antibiotic susceptibility of Pseudomonas aeruginosa PAO1 persister cells at growth non-inhibitory concentrations. Persister control by BF8 was found to be effective against both planktonic and biofilm cells of P. aeruginosa PAO1. Interestingly, although BF8 is an inhibitor of quorum sensing (QS) in Gram-negative bacteria, the data in this study suggest that the activities of BF8 to revert antibiotic tolerance of P. aeruginosa PAO1 persister cells is not through QS inhibition and may involve other targets.

Conclusion

BF8 can sensitize P. aeruginosa persister cells to antibiotics.  相似文献   

9.

Introduction

The subcutaneous (SC) route has recently emerged as a rehydration method with potential advantages in the geriatric population. Nevertheless, little is known about its application during hospitalization. The objective of the present study is to evaluate the subcutaneous non-inferiority efficacy in hydration against the intravenous (IV) route in elderly patients with dehydration.

Material and methods

A prospective, randomized and controlled interventional trial of patients 65 years and older admitted to an Acute Geriatric Unit with mild to moderate dehydration and oral intolerance, evaluating the non-inferiority of subcutaneous fluid therapy versus the intravenous route. The intervention consisted of the administration of up to 1.5 l/day/route for 72 hours subcutaneous vs. intravenous, evaluating the variations in biochemical parameters (urea, creatinine, osmolarity), clinical outcome, and route related complications.

Results

Sixty seven patients completed the study (34 SC, age 86.4±8.5 years, 41% women, vs. 33 IV, 84.3±6.6, 54.5% women, with no significant differences). The amount of fluid administered per day by route was 1.320 ml±400 SC vs. 1.480 ml±340 IV, P=.092. During follow similar reductions were observed between groups without any statistical significance, with mean differences pre-postintervention of urea (49.6±52.3 SC vs. 50.3±52.3 IV, P=.96); creatinine (0.68±0.66 SC vs. 0.60±0.49 IV, P=.58), and osmolarity (15.6±24.4 SC vs. 21.1±31 IV, P=.43). Fewer catheter extraction episodes were observed in the SC group, which also was the group most prone to peri-clysis edema.

Conclusions

The efficacy of subcutaneous rehydration in elderly hospitalized patients with mild-moderate dehydration is not inferior to that obtained intravenously, and may even have additional advantages.  相似文献   

10.

Background

Microbial antibiotic resistance is a challenging medical problem nowadays. Two scorpion peptides displaying antibiotic activity: hadrurin and vejovine were taken as models for the design of novel shorter peptides with similar activity.

Methods

Using the standard Fmoc-based solid phase synthesis technique of Merrifield twelve peptides (18 to 29 amino acids long) were synthesized, purified and assayed against a variety of multi-drug resistant Gram-negative bacteria from clinical isolates. Hemolytic and antiparasitic activities of the peptides and their possible interactions with eukaryotic cells were verified. Release of the fluorophore calcein from liposomes treated with these peptides was measured.

Results

A peptide with sequence GILKTIKSIASKVANTVQKLKRKAKNAVA), and three analogs: Δ(Α29), Δ(K12-Q18; Ν26−Α29), and K4N Δ(K12-Q18; Ν26−Α29) were shown to inhibit the growth of Gram-negative (E. coli ATCC25922) and Gram-positive bacteria (S. aureus), as well as multi-drug resistant (MDR) clinical isolated. The antibacterial and antiparasitic activities were found with peptides at 0.78 to 25 μM and 5 to 25 μM concentration, respectively. These peptides have low cytotoxic and hemolytic activities at concentrations significantly exceeding their minimum inhibitory concentrations (MICs), showing values between 40 and 900 μM for their EC50, compared to the parent peptides vejovine and hadrurin that at the same concentration of their MICs lysed more than 50% of human erythrocytes cells.

Conclusions

These peptides promise to be good candidates to combat infections caused by Gram-negative bacteria from nosocomial infections.

General significance

Our results confirm that well designed synthetic peptides can be an alternative for solving the lack of effective antibiotics to control bacterial infections.  相似文献   

11.
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.  相似文献   

12.

Background

Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s.

Method

We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium® Comfort Gel) within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate.

Results

The hand gel (85% ethanol, w/w) was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens.

Conclusion

The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.
  相似文献   

13.
Glycerol monolaurate antibacterial activity in broth and biofilm cultures   总被引:1,自引:0,他引:1  

Background

Glycerol monolaurate (GML) is an antimicrobial agent that has potent activity against gram-positive bacteria. This study examines GML antibacterial activity in comparison to lauric acid, in broth cultures compared to biofilm cultures, and against a wide range of gram-positive, gram-negative, and non-gram staining bacteria.

Methodology/Principal Findings

GML is ≥200 times more effective than lauric acid in bactericidal activity, defined as a ≥3 log reduction in colony-forming units (CFU)/ml, against Staphylococcus aureus and Streptococcus pyogenes in broth cultures. Both molecules inhibit superantigen production by these organisms at concentrations that are not bactericidal. GML prevents biofilm formation by Staphylococcus aureus and Haemophilus influenzae, as representative gram-positive and gram-negative organisms, tested in 96 well microtiter plates, and simultaneously is bactericidal for both organisms in mature biofilms. GML is bactericidal for a wide range of potential bacterial pathogens, except for Pseudomonas aeruginosa and Enterobacteriaceae. In the presence of acidic pH and the cation chelator ethylene diamine tetraacetic acid, GML has greatly enhanced bactericidal activity for Pseudomonas aeruginosa and Enterobacteriaceae. Solubilization of GML in a nonaqueous delivery vehicle (related to K-Y Warming®) enhances its bactericidal activity against S. aureus. Both R and S, and 1 and 2 position lauric acid derivatives of GML exhibit bactericidal activity. Despite year-long passage of Staphylococcus aureus on sub-growth inhibitory concentrations of GML (0.5 x minimum bactericidal concentration), resistance to GML did not develop.

Conclusions/Significance

GML may be useful as a broad-spectrum human or animal topical microbicide and may be useful as an environmental surface microbicide for management of bacterial infections and contamination.  相似文献   

14.

Background

Pseudomonas aeruginosa is an opportunistic pathogen that frequently causes hospital acquired colonization and infection. Accurate identification of host and bacterial factors associated with infection could aid treatment decisions for patients with P. aeruginosa cultured from clinical sites.

Methods

We identified a prospective cohort of 248 hospitalized patients with positive P. aeruginosa cultures. Clinical data were analyzed to determine whether an individual met predefined criteria for infection versus colonization. P. aeruginosa isolates were tested for the expression of multiple phenotypes previously associated with virulence in animal models and humans. Logistic regression models were constructed to determine the degree of association between host and bacterial factors with P. aeruginosa infection of the bloodstream, lung, soft tissue and urinary tract.

Results

One host factor (i.e. diabetes mellitus), and one bacterial factor, a Type 3 secretion system positive phenotype, were significantly associated with P. aeruginosa infection in our cohort. Subgroup analysis of patients with P. aeruginosa isolated from the urinary tract revealed that the presence of a urinary tract catheter or stent was an additional factor for P. aeruginosa infection.

Conclusions

Among hospitalized patients with culture-documented P. aeruginosa, infection is more likely to be present in those with diabetes mellitus and those harboring a Type 3 secretion positive bacterial strain.  相似文献   

15.

Background

Cystic Fibrosis (CF) patients are vulnerable to airway colonization with Pseudomonas aeruginosa. In case eradication fails after antibiotic treatment, patients become chronically colonized with P. aeruginosa, with recurrent pulmonary exacerbation, for which patients typically are hospitalized for 2 weeks and receive intravenous antibiotic treatment. Normally, improvement of the patients'' health is established.

Aim

Determination of the correspondence between patient improvement and changes of the P. aeruginosa and total bacterial load in the sputum.

Methods

Eighteen CF patients with exacerbation were included for a total of 27 hospitalization episodes. At day 1, 8 and 15, inflammation and lung function parameters were determined, together with the P. aeruginosa load in the sputum using culture, quantitative PCR (qPCR) and propidium monoazide qPCR.

Results

Patients improved during hospitalization (decrease in levels of C-reactive protein, white blood cell counts and erythrocyte sedimentation rate, increase of FEV1), reaching normal values already after one week. Also the P. aeruginosa load and the total bacterial load decreased during the first week of antibiotic treatment (p<0.05), except for patients with a low lung function (FEV1≤39.4%), for whom no significant decrease of P. aeruginosa was established. Comparison of culture-based and propidium monoazide qPCR-based quantification of P. aeruginosa showed that at the end of the treatment on average 62% of the P. aeruginosa cells are not cultivable, indicating that many cells are alive but dormant, or dead but still structurally intact.

Conclusion

Improvement of the clinical status is accompanied with a decrease of the P. aeruginosa load, whereby both occur mainly during the first week of antibiotic treatment. However, for patients with a low lung function, no decrease of the P. aeruginosa load is observed. Comparison of detection techniques shows that a large amount of noncultivable or dead bacteria are present in the samples.  相似文献   

16.

Introduction

Chronic pulmonary infection is the hallmark of Cystic Fibrosis lung disease. Searching for faster and easier screening may lead to faster diagnosis and treatment of Pseudomonas aeruginosa (P. aeruginosa). Our aim was to analyze and build a model to predict the presence of P. aeruginosa in sputa.

Methods

Sputa from 28 bronchiectatic patients were used for bacterial culturing and analysis of volatile compounds by gas chromatography–mass spectrometry. Data analysis and model building were done by Partial Least Squares Regression Discriminant analysis (PLS-DA). Two analysis were performed: one comparing P. aeruginosa positive with negative cultures at study visit (PA model) and one comparing chronic colonization according to the Leeds criteria with P. aeruginosa negative patients (PACC model).

Results

The PA model prediction of P. aeruginosa presence was rather poor, with a high number of false positives and false negatives. On the other hand, the PACC model was stable and explained chronic P. aeruginosa presence for 95% with 4 PLS-DA factors, with a sensitivity of 100%, a positive predictive value of 86% and a negative predictive value of 100%.

Conclusion

Our study shows the potential for building a prediction model for the presence of chronic P. aeruginosa based on volatiles from sputum.  相似文献   

17.
18.

Background

Antimicrobial peptides (AMPs) are receiving increasing attention due to resistance development against conventional antibiotics. Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in an array of infections such as ocular infections, cystic fibrosis, wound and post-surgery infections, and sepsis. The goal of the study was to design novel AMPs against these pathogens.

Methodology and Principal Findings

Antibacterial activity was determined by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was evaluated by hemolysis and effects on human epithelial cells. Liposome and fluorescence studies provided mechanistic information. Protease sensitivity was evaluated after subjection to human leukocyte elastase, staphylococcal aureolysin and V8 proteinase, as well as P. aeruginosa elastase. Highly active peptides were evaluated in ex vivo skin infection models. C-terminal end-tagging by W and F amino acid residues increased antimicrobial potency of the peptide sequences GRRPRPRPRP and RRPRPRPRP, derived from proline arginine-rich and leucine-rich repeat protein (PRELP). The optimized peptides were antimicrobial against a range of Gram-positive S. aureus and Gram-negative P. aeruginosa clinical isolates, also in the presence of human plasma and blood. Simultaneously, they showed low toxicity against mammalian cells. Particularly W-tagged peptides displayed stability against P. aeruginosa elastase, and S. aureus V8 proteinase and aureolysin, and the peptide RRPRPRPRPWWWW-NH2 was effective against various “superbugs” including vancomycin-resistant enterococci, multi-drug resistant P. aeruginosa, and methicillin-resistant S. aureus, as well as demonstrated efficiency in an ex vivo skin wound model of S. aureus and P. aeruginosa infection.

Conclusions/Significance

Hydrophobic C-terminal end-tagging of the cationic sequence RRPRPRPRP generates highly selective AMPs with potent activity against multiresistant bacteria and efficiency in ex vivo wound infection models. A precise “tuning” of toxicity and proteolytic stability may be achieved by changing tag-length and adding W- or F-amino acid tags.  相似文献   

19.

Background

Enterococci, and especially multiresistant Enterococcus faecium, are increasingly found colonizing hospitalized patients. This increased prevalence of colonization is not only associated with an increased prevalence of infections caused by enterococci, but also by infections with other nosocomial pathogens. In this study we investigated the causality of this observed relationship, by determining the influence of intestinal colonization with E. faecium on pulmonary defense against Pseudomonas aeruginosa.

Methodology/Principal Findings

Three groups of mice were tested; 2 groups of mice were pre-treated with vancomycin, of which one group was subsequently treated by oral gavage of vancomycin-resistant E. faecium (VRE). The third group did not receive any pre-treatment. P. aeruginosa pneumonia was induced in all mice. Vancomycin treatment resulted in intestinal gram-negative bacterial overgrowth and VRE treatment resulted in colonization throughout the intestines. All 3 groups of mice were able to clear P. aeruginosa from the lungs and circulation, with comparable lung cytokine responses and lung damage. Mice treated with vancomycin without VRE colonization displayed modestly increased plasma levels of TNF-α and IL-10.

Conclusion

Overgrowth of E. faecium and/or gram-negative bacteria does not impact importantly on pulmonary defense against P. aeruginosa pneumonia.  相似文献   

20.

Background

Moxifloxacin is a synthetic antibacterial agent belonging to the fluoroquinolone family. The antimicrobial activity of quinolones against Gram-positive and Gram-negative bacteria is based on their ability to inhibit topoisomerases. Quinolones are described to have immunomodulatory features in addition to their antimicrobial activities. It was the goal of this study to examine whether a short term treatment with moxifloxacin modulates the inflammation during a subsequently induced bacterial infection in an animal model.

Methods

Mice were treated with moxifloxacin or saline for two consecutive days and were subsequently intranasally infected with viable or heat-inactivated bacterial pathogens (Streptococcus pneumoniae, Pseudomonas aeruginosa) for 6 and 24 hours. Measurements of cytokines in the lungs and plasma were performed. Alveolar cells were determined in bronchoalveolar lavage fluits.

Results

The inflammation was increased after the inoculation of viable bacteria compared to inactivated bacteria. Numbers of total immune cells and neutrophils and concentrations of inflammatory mediators (e.g. KC, IL-1β, IL-17A) were significantly reduced in lungs of moxifloxacin-treated mice infected with inactivated and viable bacterial pathogens as compared to infected control mice. Plasma concentrations of inflammatory mediators were significantly reduced in moxifloxacin-treated mice. Immunohistochemistry showed a stronger infiltrate of TNF-α-expressing cells into lungs of saline-treated mice infected with viable P. aeruginosa as compared to moxifloxacin-treated mice.

Conclusions

These data show that in this pneumonia model moxifloxacin has anti-inflammatory properties beyond its antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号