首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

GPR40 is a free fatty acid receptor that regulates glucose-dependent insulin secretion at pancreatic β-cells and glucagon-like peptide-1 (GLP-1), one of the major incretins, secretion at the endocrine cells of the gastrointestinal tract. We investigated the synergistic effect of AS2575959, a novel GPR40 agonist, in combination with sitagliptin, a major dipeptidyl peptidase-IV (DPP-IV) inhibitor, on glucose-dependent insulin secretion and GLP-1 secretion. In addition, we investigated the chronic effects of AS2575959 on whole-body glucose metabolism.

Main methods

We evaluated acute glucose metabolism on insulin and GLP-1 secretion using an oral glucose tolerance test (OGTT) as well as assessed the chronic glucose metabolism in diabetic ob/ob mice following the repeated administration of AS2575959.

Key findings

We discovered the novel GPR40 agonist sodium [(3S)-6-({4′-[(3S)-3,4-dihydroxybutoxy]-2,2′,6′-trimethyl[1,1′-biphenyl]-3-yl}methoxy)-3H-spiro[1-benzofuran-2,1′-cyclopropan]-3-yl]acetate (AS2575959) and found that the compound influenced glucose-dependent insulin secretion both in vitro pancreas β-cell-derived cells and in vivo mice OGTT. Further, we observed a synergistic effect of AS2575959 and DPP-IV inhibitor on insulin secretion and plasma GLP-1 level. In addition, we discovered the improvement in glucose metabolism on repeated administration of AS2575959.

Significance

To our knowledge, this study is the first to demonstrate the synergistic effect of a GPR40 agonist and DPP-IV inhibitor on the glucose-dependent insulin secretion and GLP-1 concentration increase. These findings suggest that GPR40 agonists may represent a promising therapeutic strategy for the treatment of type 2 diabetes mellitus, particularly when used in combination with DPP-IV inhibitors.  相似文献   

2.

Background

Selective PPARγ modulators (sPPARγM) retains insulin sensitizing activity but with minimal side effects compared to traditional TZDs agents, is thought as a promising strategy for development of safer insulin sensitizer.

Methods

We used a combination of virtual docking, SPR-based binding, luciferase reporter and adipogenesis assays to analyze the interaction mode, affinity and agonistic activity of L312 to PPARγ in vitro, respectively. And the anti-diabetic effects and underlying molecular mechanisms of L312 was studied in db/db mice.

Results

L312 interacted with PPARγ-LBD in a manner similar to known sPPARγM. L312 showed similar PPARγ binding affinity, but displayed partial PPARγ agonistic activity compared to PPARγ full agonist pioglitazone. In addition, L312 displayed partial recruitment of coactivator CBP yet equal disassociation of corepressor NCoR1 compared to pioglitazone. In db/db mice, L312 (30 mg/kg·day) treatment considerably improved insulin resistance with the regard to OGTT, ITT, fasted blood glucose, HOMA-IR and serum lipids, but elicited less weight gain, adipogenesis and hemodilution compared with pioglitazone. Further studies demonstrated that L312 is a potent inhibitor of CDK5-mediated PPARγ phosphorylation and displayed a selective gene expression profile in epididymal WAT.

Conclusions

L312 is a novel sPPARγM.

General significance

L312 may represent a novel lead for designing ideal sPPARγM for T2DM treatment with advantages over current TZDs.  相似文献   

3.

Background

Cysteine and methionine are the two sulfur containing amino acids in proteins. While the roles of protein-bound cysteinyl residues as endogenous antioxidants are well appreciated, those of methionine remain largely unexplored.

Scope

We summarize the key roles of methionine residues in proteins.

Major conclusion

Recent studies establish that cysteine and methionine have remarkably similar functions.

General significance

Both cysteine and methionine serve as important cellular antioxidants, stabilize the structure of proteins, and can act as regulatory switches through reversible oxidation and reduction. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

4.

Background

Transplantation is one potential clinical application of neural stem cells (NSCs). However, it is very difficult to monitor/control NSCs after transplantation and so provide effective treatment. Electrical measurement using a poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT–PSS) modified microelectrode array (MEA) is a biocompatible, non-invasive, non-destructive approach to understanding cell conditions. This property makes continuous monitoring available for the evaluation/assessment of the development of cells such as NSCs.

Methods

A PEDOT–PSS modified MEA was used to monitor electrical signals during NSC development in a culture derived from rat embryo striatum in order to understand the NSC differentiation conditions.

Results

Electrical data indicated that NSCs with nerve growth factor (NGF) generate a cultured cortical neuron-like burst pattern while a random noise pattern was measured with epidermal growth factor (EGF) at 4 days in vitro (DIV) and a burst pattern was observed in both cases at 11 DIV indicating the successful monitoring of differentiation differences and developmental changes.

Conclusions

The electrical analysis of cell activity using a PEDOT–PSS modified MEA could indicate neural network formation by differentiated neurons. Changes in NSC differentiation could be monitored.

General significance

The method is based on non-invasive continuous measurement and so could prove a useful tool for the primary/preliminary evaluation of a pharmaceutical analysis. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

5.

Background

Cyclodextrins (CDs) in combination with therapeutic proteins and other bioactive compounds have been proposed as candidates that show enhanced chemical and enzymatic stability, better absorption, slower plasma clearance and improved dose–response curves or immunogenicity. As a result, an important number of therapeutic complexes between cyclodextrins and bioactive compounds capable to control several diseases have been developed.

Results

In this article, the synthesis and the structural study of a conjugate between a luteinizing hormone-releasing hormone (LHRH) analogue, related to the treatment of hormone dependent cancer and fertility, and modified β-cyclodextrin residue are presented. The results show that both the phenyl group of tyrosine (Tyr) as well as the indole group of tryptophan (Trp) can be encapsulated inside the cyclodextrin cavity. Solution NMR experiments provide evidence that these interactions take place intramolecularly and not intermolecularly.

Conclusions

The study of a LHRH analogue conjugated with modified β-cyclodextrin via high field NMR and MD experiments revealed the existence of intramolecular interactions that could lead to an improved drug delivery.

General significance

NMR in combination with MD simulation is of great value for a successful rational design of peptide–cyclodextrin conjugates showing stability against enzymatic proteolysis and a better pharmacological profile.  相似文献   

6.

Background

Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs.

Methods

Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide.

Results

We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs.

Conclusions

Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state.

General significance

These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy.  相似文献   

7.

Background

DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases.

Methods

Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4cat and UNG from different structural superfamilies were used.

Results

We found that all DNA glycosylases may utilise direct protein–protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1.

Conclusions

We hypothesize a fast “flip-flop” exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4cat, AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions.

General significance

Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway.  相似文献   

8.

Background

A large fraction of camelid (camels and llamas) antibodies is composed of heavy chain-only homodimers, able to recognise antigens with their variable domain. Events in somatic assembly and maturation of antibodies such as hypermutations and rearrangement of variable loops (CDRs — complementary determining regions) and selection among a wide range of framework variants are generally considered to be random processes.

Methods

An original algorithmic approach (Global Sequence Signature—GSS) was developed, able to take into account multiple functional and/or local sequence properties to detect scattered evolutionary constraints into sequences.

Results

Using the GSS approach, we show that the length of the main hypervariable loop (CDR3) is linked to the nature of 19 surrounding residues on the scaffold. Surprisingly, the relation between CDR3 size and scaffold residues strongly depends on the considered species, illustrating either significant differences in selection mechanisms or functional constraints during antibody maturation.

Conclusions

Combined with the statistical coupling analysis (SCA) approach at the level of scaffold residues, this study has unravelled a robust interaction network on antibody structure surrounding the CDR3 loop.

General significance

In addition to the general applicability of the GSS algorithm, which can bring together functional and sequence data to locate hot spots of constrained evolution, the relationship between CDR3 and scaffold discussed here should be taken into account in protein engineering when designing antibody libraries.  相似文献   

9.

Background and Aims

Oil palm, an unbranched perennial monocotyledon, possesses a single shoot apical meristem (SAM), which is responsible for the initiation of the entire above-ground structure of the plant. To compare the palm SAM structure with those of other monocots and to study variations in its structure throughout the life of the plant, its organization was characterized from the embryonic stage to that of the reproductive plant.

Methods

SAM structure was studied by a combination of stained histological sections, light and confocal microscopy, and serial section-based three-dimensional reconstructions.

Key Results

The oil palm SAM is characterized by two developmental phases: a juvenile phase with a single tunica-corpus structure displaying a gradual increase in size; and a mature phase characterized by a stable size, a modified shape and an established histological zonation pattern. In mature plants, fluctuations in SAM shape and volume occur, mainly as a consequence of changes in the central zone, possibly in relation to leaf initiation.

Conclusions

Development of the oil palm SAM is characterized by a juvenile to mature phase transition accompanied by establishment of a zonal pattern and modified shape. SAM zonation is dynamic during the plastochron period and displays distinct features compared with other monocots.  相似文献   

10.

Background

Bacteria adopt a variety of lifestyles in their natural habitats and can alternate among different lifestyles in response to environmental changes. At high cell densities, bacteria can form extracellular matrix encased cell population on submerged tangible surfaces (biofilms), or at the air–liquid interface (pellicles). Compared to biofilm, pellicle lifestyle allows for better oxygen access, but is metabolically more costly to maintain. Further understanding of pellicle formation and environmental cues that influence cellular choices between these lifestyles will definitely improve our appreciation of bacterial interaction with their environments.

Methods

Shewanella oneidensis cells were cultured in 24-well plates with supplementation of varied divalent cations, and pellicles formed under such conditions were evaluated. Mutants defective in respiration of divalent cations were used to further characterize and confirm unique impacts of iron.

Results and conclusions

Small amount of Fe2 + was essential for pellicle formation, but presence of over-abundant iron (0.3 mM Fe2 + or Fe3 +) led to pellicle disassociation without impairing growth. Such impacts were found due to S. oneidensis-mediated formation of insoluble alternative electron acceptors (i.e., Fe3O4) under physiologically relevant conditions. Furthermore, we demonstrated that cells preferred a lifestyle of forming biofilm and respiring on such insoluble electron acceptors under tested conditions, even to living in pellicles.

General significance

Our finding suggests that bacterial lifestyle choice involves balanced evaluation of multiple aspects of environmental conditions, and yet-to-be-characterized signaling mechanism is very likely underlying such processes.  相似文献   

11.

Background

Organic bioelectronic devices consisting of alternating poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphite oxide (rGO) striped microelectrode arrays were fabricated by lithography technology. It has been demonstrated that the organic bioelectronic devices can be used to spatially and temporally manipulate the location and proliferation of the neuron-like pheochromocytoma cells (PC-12 cells).

Methods

By coating an electrically labile contact repulsion layer of poly(l-lysine-graft-ethylene glycol) (PLL-g-PEG) on the PEDOT electrode, the location and polarity of the PC-12 cells were confined to the rGO electrodes.

Results

The outgrowth of spatially confined bipolar neurites was found to align along the direction of the 20 μm wide electrode. The location of the PC-12 cells can also be manipulated temporally by applying electrical stimulation during the neurite differentiation of PC-12 cells, allowing the PC-12 cells to cross over the boundary between the PEDOT and the rGO regions and construct neurite networks in an unconfined manner where the contact repulsive coating of PLL-g-PEG was removed.

Conclusions

This adsorption and desorption of the PLL-g-PEG without and with electrical stimulation can be attributed to the tunable surface properties of the PEDOT microelectrodes, whose surface charge can switch from being negative to positive under electrical stimulation.

General significance

The electrically tunable organic bioelectronics reported here could potentially be applied to tissue engineering related to the development and regeneration of mammalian nervous systems. The spatial and temporal control in this device would also be used to study the synapse junctions of neuron–neuron contacts in both time and space domains. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

12.

Background

Recently we proposed the therapeutic potential of pyruvate therapy for mitochondrial diseases. Leigh syndrome is a progressive neurodegenerative disorder ascribed to either mitochondrial or nuclear DNA mutations.

Methods

In an attempt to circumvent the mitochondrial dysfunction, we orally applied sodium pyruvate and analyzed its effect on an 11-year-old female with Leigh syndrome due to cytochrome c oxidase deficiency accompanied by cardiomyopathy. The patient was administered sodium pyruvate at a maintenance dose of 0.5 g/kg/day and followed up for 1 year.

Results

The exercise intolerance was remarkably improved so that she became capable of running. Echocardiography indicated improvements both in the left ventricle ejection fraction and in the fractional shortening. Electrocardiography demonstrated amelioration of the inverted T waves. When the pyruvate administration was interrupted because of a gastrointestinal infection, the serum lactate level became elevated and the serum pyruvate level, decreased, suggesting that the pyruvate administration was effective in decreasing the lactate-to-pyruvate ratio.

Conclusions

These data indicate that pyruvate therapy was effective in improving exercise intolerance at least in a patient with cytochrome c oxidase deficiency.

General significance

Administration of sodium pyruvate may prove effective for other patients with cytochrome c oxidase deficiency due to mitochondrial or nuclear DNA mutations.  相似文献   

13.

Background

Peroxynitrite (PN) is formed from superoxide and nitric oxide, both of which are increased during hepatic ethanol metabolism. Peroxynitrite forms adducts with proteins, causing structural and functional alterations. Here, we investigated PN-induced alterations in lysozyme structure and function, and whether they altered the protein's susceptibility to proteasome-catalyzed degradation.

Methods

Hen egg lysozyme was nitrated using varying amounts of either PN or the PN donor, 3-morpholinosydnonimine (SIN-1). The activity, nitration status and the susceptibility of lysozyme to proteasome-catalyzed degradation were assessed.

Results

Lysozyme nitration by PN or SIN-1 caused dose-dependent formation of 3-nitrotyrosine-lysozyme adducts, causing decreased catalytic activity, and enhanced susceptibility to degradation by the 20S proteasome. Kinetic analyses revealed an increased affinity by the 20S proteasome toward nitrated lysozyme compared with the native protein.

Conclusion

Lysozyme nitration enhances the affinity of the modified enzyme for degradation by the proteasome, thereby increasing its susceptibility to proteolysis.

General significance

Increased levels of peroxynitrite have been detected in tissues of ethanol-fed animals. The damaging effects from excessive peroxynitrite in the cell increase hepatotoxicity and cellular death by protein modification due to nitration. Cellular defenses against such changes include enhanced proteolysis by the proteasome in order to maintain protein quality control.  相似文献   

14.

Background

The nature of the polyamine–DNA interactions at a molecular level is not clearly understood.

Methods

In order to shed light on the binding preferences of polyamine with nucleic acids, the NMR solution structure of the DNA duplex containing covalently bound spermine was determined.

Results

The structure of 4-N-[4,9,13-triazatridecan-1-yl]-2′-deoxycytidine (dCSp) modified duplex was compared to the structure of the reference duplex. Both duplexes are regular right-handed helices with all attributes of the B-DNA form. The spermine chain which is located in a major groove and points toward the 3′ end of the modified strand does not perturb the DNA structure.

Conclusion

In our study the charged polyamine alkyl chain was found to interact with the DNA surface. In the majority of converged structures we identified the presumed hydrogen bonding interactions between O6 and N7 atoms of G4 and the first internal –NH2+− amino group. Additional interaction was found between the second internal –NH2+− amino group and the oxygen atom of the phosphate of C3 residue.

General significance

The knowledge of the location and nature of a structure-specific binding site for spermine in DNA should be valuable in understanding gene expression and in the design of new therapeutic drugs.  相似文献   

15.
16.
17.

Background

Agonists of P2X7 receptors increase the production of reactive oxygen species (ROS) in immunocytes. In this work we tested this response and its effect on mitochondrial inner membrane potential (Δψm) in exocrine glands.

Methods

The production of ROS by rat submandibular glands was investigated by measuring the oxidation of dichlorodihydrofluorescein (DCFH), a fluorescent probe. The Δψm was estimated with tetramethylrhodamine.

Results

Activation of P2X7 receptors by ATP or Bz-ATP increased the production of ROS. This response was not modified by inhibitors of phospholipase A2 or of various kinases. The effect of ATP was calcium-dependent and was blocked by diphenyliodonium, an inhibitor of flavoproteins. It was not affected by rotenone, an inhibitor of the complex I of the mitochondrial electron transfer chain. Scavengers of ROS had no effect on the dissipation of Δψm by ATP.

Conclusions

We conclude that, in rat submandibular glands, P2X7 receptors stimulate in a calcium-dependent manner an oxidase generating ROS, suggesting the involvement of the dual oxidase Duox2. The production of ROS does not contribute to the depolarization of mitochondria by purinergic agonists.

General significance

Purinergic receptors could be regulators of the bactericidal properties of saliva by promoting both the secretion of peroxidase from acinar cells and by activating Duox2.  相似文献   

18.

Background

The abasic sites represent one of the most frequent lesions of DNA and most of the events able to generate such modifications involve guanine bases. G-rich sequences are able to form quadruplex structures that have been proved to be involved in several important biological processes.

Methods

In this paper, we report investigations, based on calorimetric, UV, CD and electrophoretic techniques, on 12 oligodeoxynucleotides analogues of the quadruplex forming human telomere sequence d[TA(G3T2A)3G3], in which each guanine has been replaced, one at a time, by an abasic site mimic.

Results

Although all data show that the modified sequences preserve their ability to form quadruplex structures, the thermodynamic parameters clearly indicate that the presence of an abasic site decreases their thermal stability compared to the parent unmodified sequence, particularly if the replacement concerns one of the guanosines involved in the formation of the central G-tetrad.

Conclusions

The collected data indicate that the effects of the presence of abasic site lesions in telomeric quadruplex structures are site-specific. The most dramatic consequences come out when this lesion involves a guanosine in the centre of a G-run.

General significance

Abasic sites, by facilitating the G-quadruplex disruption, could favour the formation of the telomerase primer. Furthermore they could have implications in the pharmacological approach targeting telomere.  相似文献   

19.

Background

Celiac disease (CD) is an immune-mediated disorder caused by the ingestion of wheat gluten. A lifelong, gluten-free diet is required to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase (mTGase) suppressed the gliadin-specific immune response in intestinal T-cell lines from CD patients and in models of gluten sensitivity.

Methods

SDS-PAGE, Western blot, ELISA, tissue transglutaminase (tTGase) assay and nano-HPLC–ESI-MS/MS experiments were used to analyze prolamins isolated from treated wheat flour.

Results

Gliadin and glutenin yields decreased to 7.6 ± 0.5% and 7.5 ± 0.3%, respectively, after a two-step transamidation reaction that produced a water-soluble protein fraction (spf). SDS-PAGE, Western blot and ELISA analyses confirmed the loss of immune cross-reactivity with anti-native gliadin antibodies in residual transamidated gliadins (K-gliadins) and spf as well as the occurrence of neo-epitopes. Nano-HPLC–ESI-MS/MS experiments identified some native and transamidated forms of celiacogenic peptides including p31–49 and confirmed that mTGase had similar stereo-specificity of tTGase. Those peptides resulted to be 100% and 57% modified in spf and K-gliadins, respectively. In particular, following transamidation p31–49 lost its ability to increase tTGase activity in Caco-2 cells. Finally, bread manufactured with transamidated flour had only minor changes in baking characteristics.

Conclusions

The two-step transamidation reaction modified the analyzed gliadin peptides, which are known to trigger CD, without influencing main technological properties.

General significance

Our data shed further light on a detoxification strategy alternative to the gluten free diet and may have important implications for the management of CD patients.  相似文献   

20.

Background

Thiol-mediated redox regulation of proteins plays a key role in many cellular processes.

Methods

To understand the redox status of cysteinyl thiol groups of the desired proteins, we developed a new maleimide reagent: a maleimide-conjugated single strand DNA, DNA-maleimide (DNA-Mal).

Results

DNA-Mal labelled proteins run as a distinct band on SDS-PAGE, with a discrete 9.32 kDa mobility shift per label regardless of the protein species or electrophoretic conditions.

Conclusions

DNA-Mal labels free thiols like standard maleimide reagents, but possesses practical advantages in titration of the number and relative content of free thiols in a protein.

General significance

The versatility of DNA molecule enhances the application of DNA-Mal in a broader range of cysteine containing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号