首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

Background

Extracellular ATP is an endogenous signaling molecule released by various cell types and under different stimuli. High concentrations of ATP released into the extracellular medium activate the P2X7 receptor in most inflammatory conditions. Here, we seek to characterize the effects of ATP in human intestinal epithelial cells and to evaluate morphological changes in these cells in the presence of ATP.

Methods

We treated human intestinal epithelial cells with ATP and evaluated the effects of this nucleotide by scanning and transmission electron microscopy analysis and calcium measurements. We used flow cytometry to evaluate apoptosis. We collected human intestinal explants for immunohistochemistry, apoptosis by the TUNEL approach and caspase-3 activity using flow cytometry analyses. We also evaluated the ROS production by flow cytometry and NO secretion by the Griess technique.

Results

ATP treatment induced changes characteristic of cell death by apoptosis and autophagy but not necrosis in the HCT8 cell line. ATP induced apoptosis in human intestinal explants that showed TUNEL-positive cells in the epithelium and in the lamina propria. The explants exhibited a significant increase of caspase-3 activity when the colonic epithelial cells were incubated with IFN-gamma followed by ATP as compared to control cells. In addition, it was found that antioxidants were able to inhibit both the ROS production and the apoptosis induced by ATP in epithelial cells.

General significance

The activation of P2X7 receptors by ATP induces apoptosis and autophagy in human epithelial cells, possibly via ROS production, and this effect might have implications for gut inflammatory conditions.  相似文献   

2.

Object

Our objective was to explore the protective effects of hypoxic preconditioning on induced Schwann cells exposed to an environment with low concentrations of oxygen. It has been observed that hypoxic preconditioning of induced Schwann cells can promote axonal regeneration under low oxygen conditions.

Method

Rat bone marrow mesenchymal stem cells (MSCs) were differentiated into Schwann cells and divided into a normal oxygen control group, a hypoxia-preconditioning group and a hypoxia group. The ultrastructure of each of these groups of cells was observed by electron microscopy. In addition, flow cytometry was used to measure changes in mitochondrial membrane potential. Annexin V-FITC/PI staining was used to detect apoptosis, and Western blots were used to detect the expression of Bcl-2/Bax. Fluorescence microscopic observations of axonal growth in NG-108 cells under hypoxic conditions were also performed.

Results

The hypoxia-preconditioning group maintained mitochondrial cell membrane and crista integrity, and these cells exhibited less edema than the hypoxia group. In addition, the cells in the hypoxia-preconditioning group were found to be in early stages of apoptosis, whereas cells from the hypoxia group were in the later stages of apoptosis. The hypoxia-preconditioning group also had higher levels of Bcl-2/Bax expression and longer NG-108 cell axons than were observed in the hypoxia group.

Conclusion

Hypoxic preconditioning can improve the physiological state of Schwann cells in a severe hypoxia environment and improve the ability to promote neurite outgrowth.  相似文献   

3.

Background

Blood-barrier systems are essential in controlling iron levels in organs such as the brain and eye, both of which experience hypoxia in pathological conditions. While hypoxia's effects on numerous iron regulatory and storage proteins have been studied, little is known about how hypoxia affects iron metabolism. Iron also controls glutamate production and secretion; therefore the effects of hypoxia on iron metabolism and glutamate secretion were studied in polarized retinal pigmented epithelial (RPE) cells.

Methods

Primary canine RPE were cultured in Millicells to create polarized cell cultures. Iron uptake and efflux were measured in hypoxic and normoxic conditions. RPE were loaded with 59Fe-transferrin. Glutamate concentrations in the cell conditioned media were also measured.

Results

Hypoxia induced a large increase in iron efflux from RPE in the basolateral direction. Glutamate secretion occurred mainly in the basolateral direction which is away from the retina and out of the eye in vivo. Glutamate secretion was doubled under hypoxic conditions.

Conclusions

Hypoxia is known to induce oxidative damage. The current results show that iron, a key catalyst of free radical generation, is removed from RPE under hypoxic conditions which may help protect RPE from oxidative stress. Results obtained here indicate the importance of using polarized tight junctional cells as more physiologically relevant models for blood-barrier-like systems.

General significance

While the effects of hypoxia on iron efflux and glutamate secretion may be protective for RPE cells and retina, increased glutamate secretion in the brain could cause some of the damaging neurological effects seen in stroke.  相似文献   

4.

Background

Along with other regulators of cell metabolism, hypoxia-inducible factors HIF-1 and HIF-2 differentially regulate cell adaptation to hypoxia. Switches in HIF-1/HIF-2 signaling in chronic hypoxia have not been fully investigated.

Methods

Proliferation, viability, apoptosis, neuronal and bioenergetic markers, mitochondrial function, respiration, glycolysis, HIF signalling, responses to O2 and glucose deprivation (OGD) were examined using tumor PC12 and SH-SY5Y cells continuously grown at 3% O2.

Results

Hypoxic PC12 cells (H-cells) exhibit reduced proliferation and histone H4 acetylation, NGF-independent differentiation, activation of AMPK, inhibition of Akt, altered mitochondria and response to NGF. Cellular cytochrome c is increased with no effect on apoptosis. Reduction in respiration has minor effect on cellular ATP which is maintained through activated uptake (GLUT1) and utilization (HK2, PFK2) of glucose. H-cells exhibit resistance to OGD linked to increased glycogen stores. HIF-2alpha protein is decreased without changes in mRNA. Unlike HIF-1alpha, HIF-2alpha is not stabilized pharmacologically or by O2 deprivation. Capacity for HIF-2alpha stabilization is partly restored when H-cells are cultured at normoxia. In low-respiring SH-SY5Y cells cultured under the same conditions HIF-2alpha stabilization and energy budget are not affected.

Conclusions

In chronically hypoxic PC12 cells glycolytic energy budget, increased energy preservation and low susceptibility to OGD are observed. HIF-2alpha no longer orchestrates adaptive responses to anoxia.

General significance

Demonstrated switch in HIF-1/HIF-2 signaling upon chronic hypoxia can facilitate cell survival in energy crisis, by regulating balance between energy saving and decrease in proliferation, on one hand and active cell growth and tumor expansion, on the other.  相似文献   

5.
6.

Purpose

The hypoxic microenvironment of glioblastoma multiforme (GBM) is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A), a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied.

Experimental Design

Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs) were exposed to severe hypoxia produced by either CoCl2 or 1% O2. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry.

Results

In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002). Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002). PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009). In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs.

Conclusions

Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy.  相似文献   

7.

Background

Brain ischemia is the underlying cause of neuron death during stroke and brain trauma. Neural cells exposed to ischemia can undergo apoptosis. Adrenomedullin (AM) in combination with its enhancing binding protein, AMBP-1, has been shown to reduce tissue damage in inflammation.

Methods

To evaluate a beneficial effect of AM/AMBP-1 administration in brain ischemia, we employed an in vitro model of neuronal hypoxia using differentiated human neuroblastoma SH-SY5Y cells.

Results

After exposure to 1% O2 for 20 h, neural cells were injured with decreased ATP levels and increased LDH release. Pre-administration of AM/AMBP-1 significantly reduced hypoxia-induced cell injury. Moreover, AM/AMBP-1 treatment reduced the number of TUNEL-positive cells and activation of caspase-3, compared to cells exposed to hypoxia alone. AM/AMBP-1 prevented a reduction of cAMP levels and protein kinase A (PKA) activity in neural cells after hypoxia exposure. Correspondingly, an elevation of cAMP levels by forskolin protected neural cells from hypoxia-induced injury. Inhibition of PKA by KT5720 abolished the protective effect of AM/AMBP-1 on hypoxia-induced apoptosis.

Conclusions

AM/AMBP-1 elevates cAMP levels, followed by activating PKA, to protect neural cells from the injury caused by hypoxia.

General significance

AM/AMBP-1 may be used as therapeutic agents to prevent neuron damage from brain ischemia.  相似文献   

8.

Background

Altered cellular bioenergetics and oxidative stress are emerging hallmarks of most cancers including pancreatic cancer. Elevated levels of intrinsic reactive oxygen species (ROS) in tumors make them more susceptible to exogenously induced oxidative stress. Excessive oxidative insults overwhelm their adaptive antioxidant capacity and trigger ROS-mediated cell death. Recently, we have discovered a novel class of quinazolinediones that exert their cytotoxic effects by modulating ROS-mediated signaling.

Methods

Cytotoxic potential was determined by colorimetric and colony formation assays. An XF24 Extracellular Flux Analyzer, and colorimetric and fluorescent techniques were used to assess the bioenergetics and oxidative stress effects, respectively. Mechanism was determined by Western blots.

Results

Compound 3a (6-[(2-acetylphenyl)amino]quinazoline-5,8-dione) was identified through a medium throughput screen of ~ 1000 highly diverse in-house compounds and chemotherapeutic agents for their ability to alter cellular bioenergetics. Further structural optimizations led to the discovery of a more potent analog, 3b (6-[(3-acetylphenyl)amino]quinazoline-5,8-dione) that displayed anti-proliferative activities in low micromolar range in both drug-sensitive and drug-resistant cancer cells. Treatment with 3b causes Akt activation resulting in increased cellular oxygen consumption and oxidative stress in pancreatic cancer cells. Moreover, oxidative stress induced by 3b promoted activation of stress kinases (p38/JNK) resulting in cancer cell death. Treatment with antioxidants was able to reduce cell death confirming ROS-mediated cytotoxicity.

Conclusion

In conclusion, our novel quinazolinediones are promising lead compounds that selectively induce ROS-mediated cell death in cancer cells and warrant further preclinical studies.

General significance

Since 3b (6-[(3-acetylphenyl)amino]quinazoline-5,8-dione) exerts Akt-dependent ROS-mediated cell death, it might provide potential therapeutic options for chemoresistant and Akt-overexpressing cancers.  相似文献   

9.

Background

Ubiquitin–proteasome pathway (UPP) plays a very important role in the degradation of proteins. Finding novel UPP inhibitors is a promising strategy for treating multiple myeloma (MM).

Methods

Ub-YFP reporter assays were used as cellular UPP models. MM cell growth, apoptosis and overall death were evaluated with the MTS assay, Annexin V/PI dual-staining flow cytometry, poly (ADP-ribose) polymerase (PARP) cleavage, and PI uptake, respectively. The mechanism of UPP inhibition was analyzed by western blotting for ubiquitin, in vitro and cellular proteasomal and deubiquitinases (DUBs) activity assays. Cellular reactive oxygen species (ROS) were measured with H2DCFDA.

Results

Curcusone D, identified as a novel UPP inhibitor, causes cell growth inhibition and apoptosis in MM cells. Curcusone D induced the accumulation of poly-ubiquitin-conjugated proteins but could not inhibit proteasomal activity in vitro or in cells. Interestingly, the mono-ubiquitin level and the total cellular DUB activity were significantly downregulated following curcusone D treatment. Furthermore, curcusone D could induce ROS, which were closely correlated with DUB inhibition that could be nearly completely reversed by NAC. Finally, curcusone D and the proteasomal inhibitor bortezomib showed a strong synergistic effect against MM cells.

Conclusions

Curcusone D is novel UPP inhibitor that acts via the ROS-induced inhibition of DUBs to produce strong growth inhibition and apoptosis of MM cells and synergize with bortezomib.

General significance

The anti-MM molecular mechanism study of curcusone D will promote combination therapies with different UPP inhibitors against MM and further support the concept of oxidative stress regulating the activity of DUBs.  相似文献   

10.
11.

Background

Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases.

Methods

A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye.

Results

AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7.

Conclusions

A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity.

General Significance

The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging.  相似文献   

12.

Background

Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting.

Methods

H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis.

Results

High-glucose treatment resulted in increased intracellular calcium ([Ca2 +]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2 +]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death.

Conclusion

This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy.

General significance

The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium.  相似文献   

13.

Background

The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis.

Methods

Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein.

Results

Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined.

Conclusions

We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de novo protein synthesis, depending on whether the two factors induced alone or overlapping, and as such it is important for in vivo studies to take this into account.  相似文献   

14.

Background

MicroRNA is a type of non-coding small RNA involved in regulating genes and signaling pathways through incomplete complementation with target genes. Recent research supports key roles of miRNA in the formation and development of human glioma.

Methods

The relative quantity of miR-34a was initially determined in human glioma A172 cells and glioma tissues. Next, we analyzed the impact of miR-34a on A172 cell viability with the MTT assay. The effects of miR-34a overexpression on apoptosis were confirmed with flow cytometry and Hoechst staining experiments. We further defined the target genes of miR-34a using immunofluorescence and Western blot.

Results

MiR-34a expression was significantly reduced in human glioma A172 cells and glioma tissue, compared with normal glial cells and tissue samples. Our MTT data suggest that up-regulation of miR-34a inhibits cell viability while suppression of miR-34a enhances cell viability. Flow cytometry and Hoechst staining results revealed increased rates of apoptosis in A172 human glioma cells overexpressing miR-34a. Using immunofluorescence and Western blot analyses, we identified NOX2 as a target of miR-34a in A172 cells.

Conclusion

MiR-34a serves as a tumor suppressor in human glioma mainly by decreasing NOX2 expression.  相似文献   

15.

Background

Targeting multiple aspects of cellular metabolism, such as both aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), has the potential to improve cancer therapeutics. Berberine (BBR), a widely used traditional Chinese medicine, exerts its antitumor effects by inhibiting OXPHOS. 2-Deoxy-d-glucose (2-DG) targets aerobic glycolysis and demonstrates potential anticancer effects in the clinic. We hypothesized that BBR in combination with 2-DG would be more efficient than either agent alone against cancer cell growth.

Methods

The effects of BBR and 2-DG on cancer cell growth were evaluated using the Sulforhodamine B (SRB) method. Cell death was detected with the PI uptake assay, and Western blot, Q-PCR and luciferase reporter assays were used for signaling pathway detection. An adenovirus system was used for gene overexpression.

Results

BBR combined with 2-DG synergistically enhanced the growth inhibition of cancer cells in vitro. Further mechanistic studies showed that the combination drastically enhanced ATP depletion and strongly disrupted the unfolded protein response (UPR). Overexpressing GRP78 partially prevented the cancer cell inhibition induced by both compounds.

Conclusions

Here, we report for the first time that BBR and 2-DG have a synergistic effect on cancer cell growth inhibition related to ATP energy depletion and disruption of UPR.

General significance

Our results propose the potential use of BBR and 2-DG in combination as an anticancer treatment, reinforcing the hypothesis that targeting both aerobic glycolysis and OXPHOS provides more effective cancer therapy and highlighting the important role of UPR in the process.  相似文献   

16.

Background

Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined γ-irradiation-induced ATP release and its mechanism in B16 melanoma.

Methods

Extracellular ATP was measured by luciferin–luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X7 receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X7 receptor.

Results

Cells were exposed to 0.5–8 Gy of γ-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X7 receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X7 receptor-knockdown cells. Our results indicate that γ-irradiation evokes ATP release from melanoma cells, and P2X7 receptor channel plays a significant role in mediating the ATP release.

General Significance

We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.  相似文献   

17.

Background

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses.

Methods

In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~ 30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM.

Results

This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis.

Conclusions

A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells.

General significance

CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.  相似文献   

18.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

19.
20.

Aims

Metarhizin A was originally isolated from Metarhizium flavoviride as a potent inhibitor of the growth of insect and mammalian cells. In this study, we aimed to understand the molecular targets of metarhizin A involved in its anti-proliferative activity against human cells.

Main methods

Cell cycle regulators and signaling molecules were examined by immunoblotting using specific antibodies. A mitochondria-enriched fraction was prepared from mouse liver, and mitochondrial activity was monitored using an oxygen electrode. Enzyme activity was measured using purified cytochrome c oxidase and permeabilized cells.

Key findings

Metarhizin A inhibits the growth of MCF-7 cells with an IC50 value of ~ 0.2 μM and other cells in a similar manner; a cell cycle-dependent kinase inhibitor, p21, is selectively induced. Significant amounts of reactive oxygen species (ROS) are generated and ERK1/2 is activated in cells treated with metarhizin A. Metarhizin A completely suppresses oxygen consumption by mitochondria, and potently inhibits the activity of cytochrome c oxidase. It induces cell death when MCF-7 cells are cultured under limiting conditions.

Significance

Metarhizin A is a potent inhibitor of cytochrome c oxidase and activates the MAPK pathway through the generation of ROS, which induces growth arrest of cells, and, under some conditions, enhances cell death. The cytochrome c oxidase system is a possible molecular target of metarhizin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号