首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Nitric oxide (NO) plays a major role in physiology as a biological mediator. NO has been identified in nervous, immune and vascular systems and is a critical parameter in numerous pathologies, such as cancer. This article describes the electrochemical biomeasurements of NO synthase (NOS) activity from cultured endothelial cells using a multiple microelectrode array.

Methods

Firstly, the effect of biocompatible fibronectin coating on electrochemical measurements was investigated. Secondly, endothelial cells were deposited on the fibronectin coated sensor and NO release was triggered with vascular endothelial growth factor (VEGF). NG-nitro-l-arginine methyl ester (L-NAME) was used as an inhibitor of NO production, and different kinase blockers were investigated. Change in NOS activity was quantified using differential pulse voltammetry before and after addition of VEGF.

Results

Our results show that carefully applied layers of fibronectin have a very limited effect on electrochemistry and that VEGF induces an increase in NOS activity that is mainly mediated through the phosphatidylinositol 3 kinase (PI-3), and not by the extracellular signal-regulated kinases 1/2. Results obtained using electrochemical sensors were supported by wound healing assay demonstrating the critical role of phosphatidylinositol 3 kinase and extracellular signal-regulated kinases 1/2 for angiogenesis.

Conclusion

Electrochemical study of the intracellular transduction of the VEGF signal leading to NO synthesis was achieved, showing the critical role of PI-3 kinase.

General significance

This study presents an electrochemical sensor allowing measurements of NOS activity in cell cultures and tissue samples.  相似文献   

3.

Aims

It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration.

Main methods

Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21.

Key findings

Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P < 0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice.

Significance

Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model.  相似文献   

4.

Background

Vascular endothelial growth factors (VEGFs) are potential therapeutic agents for treatment of ischemic diseases. Their angiogenic effects are mainly mediated through VEGF receptor 2 (VEGFR2).

Methods

Receptor binding, signaling, and biological efficacy of several VEGFR2 ligands were compared to determine their characteristics regarding angiogenic activity and vascular permeability.

Results

Tested VEGFR2 ligands induced receptor tyrosine phosphorylation with different efficacy depending on their binding affinities. However, the tyrosine phosphorylation pattern and the activation of the major downstream signaling pathways were comparable. The maximal angiogenic effect stimulated by different VEGFR2 ligands was dependent on their ability to bind to co-receptor Neuropilin (Nrp), which was shown to form complexes with VEGFR2. The ability of these VEGFR2 ligands to induce vascular permeability was dependent on their concentration and VEGFR2 affinity, but not on Nrp binding.

Conclusions

VEGFR2 activation alone is sufficient for inducing endothelial cell proliferation, formation of tube-like structures and vascular permeability. The level of VEGFR2 activation is dependent on the binding properties of the ligand used. However, closely similar activation pattern of the receptor kinase domain is seen with all VEGFR2 ligands. Nrp binding strengthens the angiogenic potency without increasing vascular permeability.

General significance

This study sheds light on how different structurally closely related VEGFR2 ligands bind to and signal via VEGFR2/Nrp complex to induce angiogenesis and vascular permeability. The knowledge of this study could be used for designing VEGFR2/Nrp ligands with improved therapeutic properties.  相似文献   

5.

Aim

Hepatic fibrosis and angiogenesis occur in parallel during the progression of liver disease. Fibrosis promotes angiogenesis via inducing vascular endothelial growth factor (VEGF) from the activated hepatic stellate cells (HSCs). In turn, increased neovessel formation causes fibrosis, although the underlying molecular mechanism remains undetermined. In the current study, we aimed to address a role of endothelial cells (ECs) as a source of latent transforming growth factor (TGF)-β, the precursor of the most fibrogenic cytokine TGF-β.

Methods

After recombinant VEGF was administered to mice via the tail vein, hepatic angiogenesis and fibrogenesis were evaluated using immunohistochemical and biochemical analyses in addition to investigation of TGF-β activation using primary cultured HSCs and liver sinusoidal ECs (LSECs).

Results

In addition to increased hepatic levels of CD31 expression, VEGF-treated mice showed increased α-smooth muscle actin (α-SMA) expression, hepatic contents of hydroxyproline, and latency associated protein degradation products, which reflects cell surface activation of TGF-β via plasma kallikrein (PLK). Liberating the PLK-urokinase plasminogen activator receptor complex from the HSC surface by cleaving a tethering phosphatidylinositol linker with its specific phospholipase C inhibited the activating latent TGF-β present in LSEC conditioned medium and subsequent HSC activation.

Conclusion

Neovessel formation (angiogenesis) accelerates liver fibrosis at least in part via provision of latent TGF-β that activated on the surface of HSCs by PLK, thereby resultant active TGF-β stimulates the activation of HSCs.  相似文献   

6.

Aims

Endoplasmic reticulum (ER) stress is involved in the pathogenesis of atherosclerosis (AS). Endothelial cell (EC) dysfunction and monocyte migration to the subendothelium are considered to be essential manifestations of AS. We conducted this study to determine whether ER stress was involved in uremic serum-induced EC dysfunction and whether the regulation of ER stress using a chemical chaperone 4-phenylbutyric acid (4-PBA) had a preventative effect.

Main methods

Human umbilical vein endothelial cells (HUVECs) were divided into 4 groups: a control serum group (C.S), a uremic serum group (U.S), a uremic serum plus 4-PBA (5 mM) treatment group (4-PBA), and a uremic serum plus pyrrolidine dithiocarbamate (PDTC:50 μM) treatment group (PDTC).

Key findings

Lower concentrations of uremic serum (< 10%) facilitated the proliferation of HUVECs. In contrast, the proliferative capability of HUVECs was gradually decreased when we continuously increased the concentration of uremic serum. Compared with C.S, HUVEC incubation with uremic serum had high expression levels of GRP78, p-PERK, NF-κB, MCP-1, and VEGF. THP-1 migration was markedly higher than C.S over the indicated time. These alterations were inhibited by the administration of 4-PBA.

Significance

These findings suggest that regulation of ER stress coupled with inflammatory activation by 4-PBA would be a promising therapy to reverse the process and development of uremic serum-induced EC dysfunction.  相似文献   

7.

Background

Diabetes is an independent risk factor of osteoarthritis (OA). Angiogenesis is essential for the progression of OA. Here, we investigated the intracellular signaling pathways involved in high glucose (HG)-induced vascular endothelial growth factor (VEGF) expression in human synovial fibroblast cells.

Methods

HG-mediated VEGF expression was assessed with qPCR and ELISA. The mechanisms of action of HG in different signaling pathways were studied using Western blotting. Knockdown of proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the VEGF promoter.

Results

Stimulation of OA synovial fibroblasts (OASF) with HG induced concentration- and time-dependent increases in VEGF expression. Treatment of OASF with HG increased reactive oxygen species (ROS) generation. Pretreatment with NADPH oxidase inhibitor (APO or DPI), ROS scavenger (NAC), PI3K inhibitor (Ly294002 or wortmannin), Akt inhibitor, or AP-1 inhibitor (curcumin or tanshinone IIA) blocked the HG-induced VEGF production. HG also increased PI3K and Akt activation. Treatment of OASF with HG increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the VEGF promoter.

Conclusions

Our results suggest that the HG increases VEGF expression in human synovial fibroblasts via the ROS, PI3K, Akt, c-Jun and AP-1 signaling pathway.

General significance

We link high glucose on VEGF expression in osteoarthritis.  相似文献   

8.

Aims

β-Adrenoceptors modulate acute wound healing; however, few studies have shown the effects of β-adrenoceptor blockade on chronic wounds. Therefore, this study investigated the effect of β1-/β2-adrenoceptor blockade in wound healing of pressure ulcers.

Main methods

Male mice were daily treated with propranolol (β1-/β2-adrenoceptor antagonist) until euthanasia. One day after the beginning of treatment, two cycles of ischemia–reperfusion by external application of two magnetic plates were performed in skin to induce pressure ulcer formation.

Key findings

Propranolol administration reduced keratinocyte migration, transforming growth factor-β protein expression, re-epithelialization, and necrotic tissue loss. Neutrophil number and neutrophil elastase protein expression were increased in propranolol-treated group when compared with control group. Propranolol administration delayed macrophage mobilization and metalloproteinase-12 protein expression and reduced monocyte chemoattractant protein-1 protein expression. Myofibroblastic differentiation, angiogenesis, and wound closure were delayed in the propranolol-treated animals. Propranolol administration increased neo-epidermis thickness, reduced collagen deposition, and enhanced tenascin-C expression resulting in the formation of an immature and disorganized collagenous scar.

Significance

β1-/β2-Adrenoceptor blockade delays wound healing of ischemia–reperfusion skin injury through the impairment of the re-epithelialization and necrotic tissue loss which compromise wound inflammation, dermal reconstruction, and scar formation.  相似文献   

9.

Aims

Both advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).

Main methods

AGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.

Key findings

AGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.

Significance

This study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.  相似文献   

10.
研究福安泰-03(Fuantai,FAT-03)对人脐静脉血管内皮细胞(humanumbilicalveinen-dothelialcells,HUVECs)凋亡和小鼠创伤愈合的影响。MTT法检查FAT-03对HUVECs和人低分化鼻咽癌细胞(CNE-2Z)生长的影响:聚碳酸酯膜小室趋化运动模型(Transwellmodel)检测,]FAT-03对HU-VECs运动能力的影响;荧光显微镜观察FAT-03作用下HUVECs的形态变化;膜联蛋白V-异硫氰酸荧光素(AnnexinV-fluoresceinisothiocyanate,AnnexinV-FITC)双染检测Ⅳm03对HUVECs早期凋亡的影响;流式细胞术分析FAT-03对HUVECs周期及凋亡的影响;Westernblot法分析FAT-03对HUVECs的血管内皮细胞生长因子(VEGF)、Bcl.2、Bax表达的影响;小鼠背部创伤模型检查FAT-03对组织修复的影响;免疫组化法检查FAT-03对创伤组织微血管密度(microvesseldensity,MVD)和VEGF表达的影响。结果显示,FAT-03明显抑制HUVECs细胞的增殖和迁移,其抑制效果与剂量和作用时间相关,作用HUVECs24,48,72h的Ic50值为0.22,0.17,0.09mg/mL,但FAT-03对CNE.2Z细胞的生长却无明显的影响;0.16mg/mLFAT-03作用HUVECs24h对细胞迁移的抑制率为57.9%(P<0.01):FAT_03处理HUVECs48h,细胞的早期凋亡率增加(P〈0.05);FAT-03阻滞HUVECs于G0/Gl期,并呈现典型的凋亡峰;0.16mg/mLFAT-03作用48,72h,HUVECs的凋亡率分别为14.6%、41.7%:鲋m03下调HUVECs的VEGF和抑凋亡基因Bcl-2的表达,上调促凋亡基因Bax的表达,其效果与剂量相关。FAT-03明显延迟小鼠创伤的愈合,且其作用与剂量相关。FAT-03组小鼠创伤周围组织微血管密度和VEGF阳性表达细胞都明显减少。因此,可以推测,FAT-03抑制HUVECs增殖并诱导其凋亡;抑制创伤组织的血管生成,进而延迟创伤愈合;它的这些作用可能与其下调VEGF、Bcl-2的表达,上调Bax的表达相关。  相似文献   

11.

Objective

This study is to investigate the role of glucose-regulated protein 78 (GRP78) in the pulmonary microvascular remodeling during hepatopulmonary syndrome (HPS) development.

Methods

The rat models with liver cirrhosis and HPS were induced by multiple pathogenic factors for 4 to 8 wk. The concentrations of alanine transferase (ALT) and endotoxin in plasma were detected in the models, followed by the detection of GRP78 expression. RT-PCR, quantitative real-time PCR and Western blotting were employed to assess the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), respectively. Immunohistochemistry staining was used to examine the expression of a specific vascular marker, factor VIII-related antigen (FVIII-RAg), and several cell proliferation- and apoptosis-related proteins, including CHOP/GADD153, caspase-12, Bcl-2 and nuclear factor (NF)-κB.

Results

The levels of endotoxin and ALT in plasma were gradually increased as the disease progressed, so did GRP78, which were in a positive correlation. The expression levels of VEGF (both mRNA and protein) and FVIII-RAg were significantly elevated in the HPS models, indicating active angiogenesis, which was also positively correlated with GRP78 expression. Furthermore, the expression levels of the pro-apoptotic proteins of CHOP/GADD153 and caspase-12 were dramatically decreased, while the anti-apoptotic proteins of Bcl-2 and NF-κB were significantly elevated, in the HPS models. There were also close correlation between these proteins and GRP78.

Conclusions

Over-expression of GRP78 in lungs may be the critical pathogenic factor for HPS. Through promoting cell proliferation and survival and inhibiting apoptosis, GRP78 may promote the pulmonary microvascular remodeling in HPS pathogenesis. Our results provide a potential therapeutic target for clinical prevention and treatment for HPS and related complications.  相似文献   

12.
13.

Objective

When polymer brushes are applied as the inner coating for artificial blood vessels, they may induce unwanted responses in vascular endothelial cells continuously exposed to the polymer surface. Accordingly, we have examined the in vitro effect of non-biofouling concentrated polymer brushes (CPBs) on pro-inflammatory and angiogenic responses of human umbilical vein endothelial cells (HUVECs).

Results

Micro-patterned CPBs were prepared on silicon wafers using biocompatible polymers, poly(poly(ethylene glycol)methyl ether methacrylate) (PPEGMA) and poly(2-hydroxyethyl methacrylate) (PHEMA). HUVECs were cultured on PPEGMA-CPBs and PHEMA-CPBs with different channel widths (20, 50, and 80 µm) and analyzed for mRNA expression of the pro-inflammatory cytokines IL-6 and IL-8 and angiogeneic vascular endothelial growth factor (VEGF). Irrespective of channel width, PHEMA-CPBs reduced the expression of all target genes, whereas PPEGMA-CPBs reduced VEGF and did not affect IL-6 and IL-8 levels.

Conclusion

Micro-patterned CPBs, irrespective of chemical structure or adhesion area, do not induce the expression of important pro-inflammatory and angiogenic mediators in endothelial cells.
  相似文献   

14.
15.

Purpose

To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing.

Methods

TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays.

Results

TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing.

Conclusions

TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury.  相似文献   

16.

Background

Human umbilical endothelial cells (HUVECs) are widely used to study the endothelial physiology and pathology that might be involved in sex and gender differences detected at the cardiovascular level. This study evaluated whether HUVECs are sexually dimorphic in their morphological, proliferative and migratory properties and in the gene and protein expression of oestrogen and androgen receptors and nitric oxide synthase 3 (NOS3). Moreover, because autophagy is influenced by sex, its degree was analysed in male and female HUVECs (MHUVECs and FHUVECs).

Methods

Umbilical cords from healthy, normal weight male and female neonates born to healthy non-obese and non-smoking women were studied. HUVEC morphology was analysed by electron microscopy, and their function was investigated by proliferation, viability, wound healing and chemotaxis assays. Gene and protein expression for oestrogen and androgen receptors and for NOS3 were evaluated by real-time PCR and Western blotting, respectively, and the expression of the primary molecules involved in autophagy regulation [protein kinase B (Akt), mammalian target of rapamycin (mTOR), beclin-1 and microtubule-associated protein 1 light chain 3 (LC3)] were detected by Western blotting.

Results

Cell proliferation, migration NOS3 mRNA and protein expression were significantly higher in FHUVECs than in MHUVECs. Conversely, beclin-1 and the LC3-II/LC3-I ratio were higher in MHUVECs than in FHUVECs, indicating that male cells are more autophagic than female cells. The expression of oestrogen and androgen receptor genes and proteins, the protein expression of Akt and mTOR and cellular size and shape were not influenced by sex. Body weights of male and female neonates were not significantly different, but the weight of male babies positively correlated with the weight of the mother, suggesting that the mother’s weight may exert a different influence on male and female babies.

Conclusions

The results indicate that sex differences exist in prenatal life and are parameter-specific, suggesting that HUVECs of both sexes should be used as an in vitro model to increase the quality and the translational value of research. The sex differences observed in HUVECs could be relevant in explaining the diseases of adulthood because endothelial dysfunction has a crucial role in the pathogenesis of cardiovascular diseases, diabetes mellitus, neurodegeneration and immune disease.
  相似文献   

17.

Background

Endothelial cells have important functions in e.g. regulating blood pressure, coagulation and host defense reactions. Serglycin is highly expressed by endothelial cells, but there is limited data on the roles of this proteoglycan in immune reactions.

Methods

Cultured primary human endothelial cells were exposed to proinflammatory agents lipopolysaccharide (LPS) and interleukin 1β (IL-1β). The response in serglycin synthesis, secretion and intracellular localization and effect on the proteoglycan binding chemokines CXCL-1 and CXCL-8 were determined by qRT-PCR, Western blotting, immunocytochemistry, ELISA and serglycin knockdown experiments.

Results

Both LPS and IL-1β increased the synthesis and secretion of serglycin, while only IL-1β increased serglycin mRNA expression. Stimulation increased the number of serglycin containing vesicles, with a greater portion of large vesicles after LPS treatment. Also, increased intracellular and secreted levels of CXCL-1 and CXCL-8 were observed. The increase in CXCL-8 secretion was unchanged in serglycin knockdown cells. However, the increase in CXCL-1 secretion from IL-1β stimulation was reduced 27% in serglycin knockdown cells; while the LPS-induced secretion was not affected. In serglycin expressing cells CXCL-1 positive vesicles were evenly distributed throughout the cytoplasm, while confided to the Golgi region in serglycin knockdown cells. This was the case only for IL-1β stimulated cells. LPS-induced CXCL-1 distribution was unaffected by serglycin expression.

Conclusions

These results suggest that different signaling pathways are involved in regulating secretion of serglycin and partner molecules in activated endothelial cells.

General significance

This knowledge increases our understanding of the roles of serglycin in immune reactions. This article is part of a Special Issue entitled: Matrix-mediated cell behaviour and properties.  相似文献   

18.

Aims

Although showing an anti-tumor activity, evodiamine also up-regulated IL-8 production of human gastric cancer AGS cells. This study aimed to assess this effect and to examine whether co-administration with berberine counteracts it.

Main methods

MTT assay was used to assess the cell proliferation and adhesive ability. Flow cytometry was performed to measure the cell cycle distribution. Wound healing assay was used to detect the migration ability of cells. IL-8 production was determined by ELISA. Levels of mRNA expression of IL-8, VCAM-1 and ICAM-1 were measured by real-time PCR. Molecular pathways involved were evaluated by ELISA and western-blotting methods.

Key findings

Evodiamine triggered proliferative inhibition and cell cycle arrest, and decreased migration of AGS cells. IL-8 expression and the adhesive ability of AGS cells to HUVECs were significantly increased by evodiamine, but were inhibited after being co-treated with berberine in AGS cells. As IL-8 was neutralized, increased adhesion of AGS cells to HUVECs induced by evodiamine was abolished. Berberine significantly suppressed the up-regulation of VCAM-1 and the down-regulation of ICAM-1 induced by evodiamine. Evodiamine provoked IL-8 secretion via ERK1/2, SAPK/JNK, JAK2 and AP-1 pathways which could be counteracted by berberine.

Significance

Although showing anti-proliferative and anti-migratory activities in AGS cells, evodiamine displayed a potential tendency to promote metastasis of gastric cancer cells by increasing IL-8 secretion and adhesion molecules. However, berberine could counteract the side-effect and simultaneously keep anti-proliferative and anti-migratory properties of evodiamine on AGS cells, which reduces the risk to use evodiamine in therapy of gastric cancers.  相似文献   

19.

Background

Breast cancer–endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells.

Methods

To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties.

Results

BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome β5 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC.

Conclusions and general significance

BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

20.

Purpose

To evaluate the effect of metformin on vascular changes in oxygen-induced retinopathy (OIR) in mouse, and to elucidate the possible underlying mechanism.

Methods

OIR mice were treated with metformin by intraperitoneal injection from postnatal day 12 (P12) to P17 or P21. At P17 and P21, vessel formation and avascular areas were assessed using retinal flat mounts. Levels of vascular endothelial growth factor (VEGF) were measured by enzyme-linked immunosorbent assays, and the effects of metformin on VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) were assessed. The effects of metformin on the levels of Flk1 (VEGF receptor-2) and phosphorylated Flk1 (pFlk1) were measured by Western blotting (HUVECs) and immunohistochemistry (retinal tissue).

Results

Retinal morphologic changes were analyzed between two groups (saline-treated OIR; metformin-treated OIR). Metformin treatment did not change the extent of avascular areas at P17. However, at P21, when OIR pathology was markedly improved in the saline-treated group, OIR pathology still remained in the metformin-treated OIR group. VEGF expression levels did not differ between metformin- and saline-treated OIR groups at P17 and P21, but Flk1 levels were significantly reduced in the metformin group compared with saline-treated OIR group. Moreover, metformin inhibited VEGF-induced cell proliferation and decreased levels of Flk1 and pFlk1, consistent with the interpretation that metformin inhibits vascular growth by reducing Flk1 levels.

Conclusion

Metformin exerts anti-angiogenesis effects and delays the normal vessel formation in the recovery phase of OIR in mice, likely by suppressing the levels of Flk1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号