首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells frequently arrest or die in response to DNA damage to reduce the likelihood of progression to malignancy. A recent study sheds new light on the Aven protein, a known apoptotic regulator. After DNA damage, Aven induces cell-cycle arrest via ataxia-telangiectasia-mutated (ATM) kinase activation. These findings add Aven to a growing list of apopototic regulators that function as double agents in the DNA-damage response.  相似文献   

2.
Yang C  Tang X  Guo X  Niikura Y  Kitagawa K  Cui K  Wong ST  Fu L  Xu B 《Molecular cell》2011,44(4):597-608
The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell-cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in shortened mitotic timing and a defective spindle checkpoint, and that abrogation of ATM Ser1403 phosphorylation leads to this spindle checkpoint defect. We also demonstrate that mitotically activated ATM phosphorylates Bub1, a critical kinetochore protein, on Ser314. ATM-mediated Bub1 Ser314 phosphorylation is required for Bub1 activity and is essential for the activation of the spindle checkpoint. Collectively, our data highlight mechanisms of a critical function of ATM in mitosis.  相似文献   

3.
Rapid activation of ATM on DNA flanking double-strand breaks   总被引:5,自引:0,他引:5  
  相似文献   

4.
ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.  相似文献   

5.
The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF-193 induced ATM autophosphorylation and ATM-dependent phosphorylation of Ser15-p53 and Thr68 in Chk2, but no appreciable phosphorylation of Ser139-H2AX or Ser345-Chk1. The results suggest that inhibition of topo II induces ATM to phosphorylate selected targets that contribute to a G2 arrest independently of DNA damage.  相似文献   

6.
Luo Y  Chen AY  Qiu J 《Journal of virology》2011,85(1):133-145
Minute virus of canines (MVC) is an autonomous parvovirus that replicates efficiently without helper viruses in Walter Reed/3873D (WRD) canine cells. We previously showed that MVC infection induces mitochondrion-mediated apoptosis and G(2)/M-phase arrest in infected WRD cells. However, the mechanism responsible for these effects has not been established. Here, we report that MVC infection triggers a DNA damage response in infected cells, as evident from phosphorylation of H2AX and RPA32. We discovered that both ATM (ataxia telangiectasia-mutated kinase) and ATR (ATM- and Rad3-related kinase) were phosphorylated in MVC-infected WRD cells and confirmed that ATM activation was responsible for the phosphorylation of H2AX, whereas ATR activation was required for the phosphorylation of RPA32. Both pharmacological inhibition of ATM activation and knockdown of ATM in MVC-infected cells led to a significant reduction in cell death, a moderate correction of cell cycle arrest, and most importantly, a reduction in MVC DNA replication and progeny virus production. Parallel experiments with an ATR-targeted small interfering RNA (siRNA) had no effect. Moreover, we identified that this ATM-mediated cell death is p53 dependent. In addition, we localized the Mre11-Rad50-Nbs1 (MRN) complex, the major mediator as well as a substrate of the ATM-mediated DNA damage response pathway to MVC replication centers during infection, and show that Mre11 knockdown led to a reduction in MVC DNA replication. Our findings are the first to support the notion that an autonomous parvovirus is able to hijack the host DNA damage machinery for its own replication and for the induction of cell death.  相似文献   

7.
The genome is constantly exposed to DNA damage agents, leading up to as many as 1 million individual lesions per cell per day. Cells have developed a variety of DNA damage repair (DDR) mechanisms to respond to harmful effects of DNA damage. Failure to repair the damaged DNA causes genomic instability and, as a result, leads to cellular transformation. Indeed, deficiencies of DDR frequently occur in human cancers, thus providing a great opportunity for cancer therapy by developing anticancer agents that work by synthetic lethality-based mechanisms or enhancing the clinical efficacy of radiotherapy and existing chemotherapies. Ataxia-telangiectasia mutated (ATM) plays a key role in regulating the cellular response to DNA double-strand breaks. Ionizing radiation causes double-strand breaks and induces rapid ATM autophosphorylation on serine 1981 that initiates ATM kinase activity. Activation of ATM results in phosphorylation of many downstream targets that modulate numerous damage-response pathways, most notably cell-cycle checkpoints. We describe here the development and validation of a high-throughput imaging assay measuring levels of phospho-ATM Ser1981 in HT29 cells after exposure to ionizing radiation. We also examined activation of downstream ATM effectors and checked specificity of the endpoint using known inhibitors of DNA repair pathways.  相似文献   

8.
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.  相似文献   

9.
10.
Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition.  相似文献   

11.
DNA damage: Chk1 and Cdc25, more than meets the eye   总被引:7,自引:0,他引:7  
Control of mitotic entry is a component of the checkpoint response that contributes to cell survival following DNA damage. In some eukaryotic cells, mitotic entry relies heavily on regulation of the state of tyrosine phosphorylation of the cyclin-dependent kinase Cdc2. Evidence that checkpoint regulation of cell-cycle progression operates through controlling the state of Cdc2 tyrosine phosphorylation exists. Whether other targets of the checkpoint pathway could play important roles in the response to DNA damage is a subject of ongoing investigations.  相似文献   

12.
In vertebrates, ATM and ATR are critical regulators of checkpoint responses to damaged and incompletely replicated DNA. These checkpoint responses involve the activation of signaling pathways that inhibit the replication of chromosomes with DNA lesions. In this study, we describe the isolation of a cDNA encoding a full-length version of Xenopus ATM. Using antibodies against the regulatory domain of ATM, we have identified the essential replication protein Mcm2 as an ATM-binding protein in Xenopus egg extracts. Xenopus Mcm2 underwent phosphorylation at Ser(92) in response to the presence of double-stranded DNA breaks or DNA replication blocks in egg extracts. This phosphorylation involved both ATM and ATR, but the relative contribution of each kinase depended upon the checkpoint-inducing DNA signal. Furthermore, both ATM and ATR phosphorylated Mcm2 directly at Ser(92) in cell-free kinase assays. Immunodepletion of both ATM and ATR abrogated the checkpoint response that blocks chromosomal DNA replication in egg extracts containing double-stranded DNA breaks. These experiments indicate that ATM and ATR phosphorylate the functionally critical replication protein Mcm2 during both DNA damage and replication checkpoint responses in Xenopus egg extracts.  相似文献   

13.
14.
Fer is an intracellular tyrosine kinase which resides in both the cytoplasm and nucleus of mammalian cells. This kinase was also found in all malignant cell-lines analyzed and was shown to support cell-cycle progression in cancer cells. Herein we show that knock-down of Fer, both, impairs cell-cycle progression and imposes programmed cell death in colon carcinoma (CC) cells. The cell-cycle arrest and apoptotic death invoked by the depletion of Fer were found to depend on the activity of p53. Accordingly, down regulation of Fer led to the activation of the Ataxia Telangiectasia Mutated protein (ATM) and its down-stream effector-p53. Knock-down of Fer also increased the level of Reactive-Oxygen Species (ROS) in CC cells, and subjection of Fer depleted cells to ROS neutralizing scavengers significantly decreased the induced phosphorylation and activation of ATM and p53. Notably, over-expression of Fer opposed the Doxorubicin driven activation of ATM and p53, which can be mediated by ROS. Collectively, our findings imply that Fer sustains low ROS levels in CC cells, thereby restraining the activation of ATM and p53 in these cells.  相似文献   

15.
16.
DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.  相似文献   

17.
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.  相似文献   

18.
The recognition and signaling of DNA double strand breaks involves the participation of multiple proteins, including the protein kinase ATM (mutated in ataxia-telangiectasia). ATM kinase is activated in the vicinity of the break and is recruited to the break site by the Mre11-Rad50-Nbs1 complex, where it is fully activated. In human cells, the activation process involves autophosphorylation on three sites (Ser(367), Ser(1893), and Ser(1981)) and acetylation on Lys(3016). We now describe the identification of a new ATM phosphorylation site, Thr(P)(1885) and an additional autophosphorylation site, Ser(P)(2996), that is highly DNA damage-inducible. We also confirm that human and murine ATM share five identical phosphorylation sites. We targeted the ATM phosphorylation sites, Ser(367) and Ser(2996), for further study by generating phosphospecific antibodies against these sites and demonstrated that phosphorylation of both was rapidly induced by radiation. These phosphorylations were abolished by a specific inhibitor of ATM and were dependent on ATM and the Mre11-Rad50-Nbs1 complex. As found for Ser(P)(1981), ATM phosphorylated at Ser(367) and Ser(2996) localized to sites of DNA damage induced by radiation, but ATM recruitment was not dependent on phosphorylation at these sites. Phosphorylation at Ser(367) and Ser(2996) was functionally important because mutant forms of ATM were defective in correcting the S phase checkpoint defect and restoring radioresistance in ataxia-telangiectasia cells. These data provide further support for the importance of autophosphorylation in the activation and function of ATM in vivo.  相似文献   

19.
Requirement of the MRN complex for ATM activation by DNA damage   总被引:34,自引:0,他引:34  
The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号