首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W.J. da Silva  P. Arruda 《Phytochemistry》1979,18(11):1803-1805
A split pollination was used to produce normal (Su su su O2 o2 o2) and high lysine double mutant sugary opaque-2 (su su su o2 o2 o2) endosperms on the same ear of sugary opaque-2 maize plants. Amino acids were determined in the vascular sap of the ear peduncle. Lysine content in the sap was compared with lysine stored in both normal and sugary opaque-2 endosperm during kernel filling. Lysine content in the ear peduncle sap could account for all lysine found in both endosperms. Preformed lysine is highly catabolized in the normal endosperm, but not in the high lysine sugary opaque-2 endosperm. The rate of lysine breakdown appears to be an important mechanism by which the high lysine mutant controls lysine level in maize endosperm.  相似文献   

2.
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a rice small subunit ADP-glucose pyrophosphorylase gene (osAGP) and the rice glutelin 1 gene (osGT1). Most plants had a transgene expression profile similar to that of the endogenous gene: expression in the pollen and endosperm for the zmGBS transgene, and endosperm only for the others. Histological analysis indicated expression initiated at the periphery of the endosperm for zmGBS, zmZ27 and osGT1, while osAGP transgene activity tended to start in the lower portion of the seed. Transgene expression at the RNA level was proportional to GUS activity, and did not influence endogenous gene expression. Genetic analysis showed that there was a positive dosage response with most lines. Activity of the zmGBS transgene was threefold higher in a low starch (shrunken2) genetic background. This effect was not seen with zmZ27 or osGT1 transgenes. The expression of the transgenes is discussed relative to the known behaviour of the endogenous genes, and the developmental programme of the maize endosperm  相似文献   

3.
Summary The synthesis of two modified genes, Cry IA(b) and CryIA(c), each consisting of 1845 bp, is described in detail. The genes were synthesized using an improved PCR procedure based on recursive principles. The synthetic CryIA(c) gene was put under the control of a maize ubiquitin promoter. This construct was tested in a maize endosperm-derived suspension culture system. The use of maize endosperm culture as a quick and efficient system to test the activity of synthetic genes is described.  相似文献   

4.
5.
6.
7.
Regulation of programmed cell death in maize endosperm by abscisic acid   总被引:26,自引:0,他引:26  
Cereal endosperm undergoes programmed cell death (PCD) during its development, a process that is controlled, in part, by ethylene. Whether other hormones influence endosperm PCD has not been investigated. Abscisic acid (ABA) plays an essential role during late seed development that enables an embryo to survive desiccation. To examine whether ABA is also involved in regulating the onset of PCD during endosperm development, we have used genetic and biochemical means to disrupt ABA biosynthesis or perception during maize kernel development. The onset and progression of cell death, as determined by viability staining and the appearance of internucleosomal DNA fragmentation, was accelerated in developing endosperm of ABA-insensitive vp1 and ABA-deficient vp9 mutants. Ethylene was synthesized in vp1 and vp9 mutant kernels at levels that were 2–4-fold higher than in wild-type kernels. Moreover, the increase and timing of ethylene production correlated with the premature onset and accelerated progression of internucleosomal fragmentation in these mutants. Treatment of developing wild-type endosperm with fluridone, an inhibitor of ABA biosynthesis, recapitulated the increase in ethylene production and accelerated execution of the PCD program that was observed in the ABA mutant kernels. These data suggest that a balance between ABA and ethylene establishes the appropriate onset and progression of programmed cell death during maize endosperm development.  相似文献   

8.
9.
Summary An indirect approach was adopted to select viable mutants affecting the male gametophytic generation in maize. This approach consists of a selection of endosperm defective mutants followed by a test for gametophytic gene expression, based on the distortion from mendelian segregation and on the measurement of pollen size and pollen sterility. The material used consisted of 34 endosperm defective viable mutants introgressed in B37 genetic background. Complementation tests indicated that the mutation in the collection of mutants affected different genes controlling endosperm development. The study of the segregation in F2 revealed four classes of de (defective endosperm) mutants: (1) mutants in which the mutation does not affect either gametophytic development or function; (2) mutants in which the effect on the gametophyte affects pollen development processes; (3) mutants showing effects on both pollen development and function, and (4) mutants where only pollen tube growth rate is affected. Positive and negative interactions between pollen and style were detected by means of mixed pollination (pollen produced by de/de plants and pollen from an inbred line used as a standard and carrying genes for colored aleurone), on de/de and de/ + plants. Positive interactions were interpreted as methabolic complementation between defective pollen and normal styles.  相似文献   

10.
Protein breakdown during germination of maize at 28° is closely correlated with the appearance of protease activity. In the first 2 days of germination, a slight disaggregation of only G3 glutelins into more simple elements (albumin-globulins) can be observed. Between 2 and 2.5 days, there is extensive breakdown of all protein fractions, the rate of which coincides with the rate of appearance of proteolytic activity. After 2.5 days these phenomena slow down and the bulk of the endosperm proteins disappears. Three acid proteases in endosperm extracts of germinated grain (P11, P21 and P22) have been isolated by affinity chromatography and gel filtration, and partially characterized. P11 (MW 40 000) which is present in the ungerminated grain, cannot hydrolyse prolamins and is insensitive to reducing agents. P21 (MW 36 000) and P22 (MW 12 000), which appear on day 3 of germination, can degrade prolamins in vitro. Reducing agents enhance their activity and prevent their aggregation or denaturation. Comparative assays with different substrates suggest our enzyme preparations are principally endotype proteases with little contaminating carboxypeptidase activity.  相似文献   

11.
Plant seed storage proteins are synthesized and deposited in endosperm or cotyledon tissue to serve an important physiological function at the onset of germination. Because of their abundance, they constitute an important factor for the amount and nutritional value of kernel proteins. The physiological, biochemical, and genetic properties of many storage proteins and their genes, in particular those of cereals and legumes, have been extensively studied in the past and the results have been summarized in several reviews.1–6 More recently, representative genes coding for storage proteins have been isolated and are now being used in attempts to elucidate the mechanism of the regulated synthesis of storage proteins. The purpose of this review is to outline, using maize as an example, the recent progress made in this effort.  相似文献   

12.
Two novel maize genes expressed specifically in the central cell of the female gametophyte and in two compartments of the endosperm (the basal endosperm transfer layer and the embryo surrounding region) were characterized. The ZmEBE (embryo sac/basal endosperm transfer layer/embryo surrounding region) genes were isolated by a differential display between the upper and the lower half of the kernel at 7 days after pollination (DAP). Sequence analysis revealed ORFs coding for two closely related proteins of 304 amino acids (ZmEBE-1) and 286 amino acids (ZmEBE-2). This size difference was due to differences in the splicing of the two genes. Both protein sequences showed significant similarity to the DUF239 family of Arabidopsis, a group of 22 proteins of unknown function, a small number of which are putative peptidases. ZmEBE genes had a novel cell type-specific expression pattern in the central cell before and the resulting endosperm after fertilization. RT-PCR analysis showed that the expression of both genes started before pollination in the central cell and continued in the kernel up to 20 DAP with a peak at 7 DAP. In situ hybridization revealed that the expression in the kernel was restricted to the basal transfer cell layer and the embryo surrounding region of the endosperm. The expression of ZmEBE-1 was at least 10 times lower than that of ZmEBE-2. Similarly to other genes expressed in the endosperm, ZmEBE-1 expression was subject to a parent-of-origin effect, while no such effect was detected in ZmEBE-2. Sequence analysis of upstream regions revealed a potential cis element of 33 bp repeated 7 times in ZmEBE-1 and ZmEBE-2 between positions -900 and -100. The 1.6 kb ZmEBE-2 upstream sequence containing the seven R7 elements was able to confer expression in the basal endosperm to a Gus reporter gene. These data indicate that ZmEBE is potentially involved in the early development of specialized domains of the endosperm and that this process is possibly already initiated in the central cell, which is at the origin of the endosperm.  相似文献   

13.
Accumulation of the 28 KD protein of the glutelin-(G2) fraction was followed in developing maize endosperm, using sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and peak integration of scanned gels. 28 KD glutelin-2 could already be observed from 15 days after pollination and its accumulates reached a plateau during the second half of the development period. The process of biosynthesis of 28 KD glutelin-2 and zeins occurs in a parallel way. Subcellular fractions obtained from linear sucrose gradient centrifugation of developing maize endosperms were analyzed by SDS-PAGE and immunoblotting using a serum reacting against glutelin-2 and 14 KD Z2. Glutelin-2 was found to be present in the protein bodies when subcellular fractionation was carried out without dithiothreitol (DTT). The presence of a reducing agent causes the elution of glutelin-2 from protein bodies. Immunocytochemical labelling using the protein A-colloidal gold technique in protein bodies incubated with anti-G2 IgG revealed that G2 is located mainly in the periphery of protein bodies. These results are interpreted as indicating a structural role for glutelins in protein bodies.  相似文献   

14.
The isolation and sugar uptake characteristics of protoplasts from maize ( Zea mays L.) endosperm-derived suspension cultures are described. In contrast with protoplasts from intact developing endosperm, which by virtue of their large size and high starch content are too fragile for sugar uptake experiments, suspension cultures yielded protoplasts capable of withstanding the necessary handling and centrifugations. Intactness of the protoplasts was demonstrated by dye exclusion or accumulation and latency of malate dehydrogenase activity. Uptake of radioactivity from [3H]-inulin did not increase with time, but that from [14C]-sugars increased over a wide range of external concentrations. Kinetics of fructose, glucose and sucrose uptake were biphasic, and the saturable components of uptake were eliminated by p -chloromercuribenzene sulfonate (PCMBS). Rates of uptake of sucrose and 1'-fluorosucrose were similar, confirming that hydrolysis by cell wall invertase contributes to sucrose uptake by the suspension cultures. The isolation of protoplasts from this tissue source will enable experimental access to plasma membrane sugar carriers which may exist in the intact maize endosperm.  相似文献   

15.
16.
17.
The absolute activities of sucrose-UDP glucosyltransferase, glucose-6-phosphate ketoisomerase and soluble and bound ADPG-starch glucosyltransferase have been studied in normal and Opaque-2 maize endosperms during development. In general, the activities of these enzymes except sucrose-UDP glucosyltransferase were higher up to 20 days post-pollination and lower at the 30 day stage in Opaque-2 than in normal maize endosperms. However, sucrose-UDP glucosyltransferase activity was higher in normal maize endosperm up to the 20 day stage while it was lower at subsequent stages than in Opaque-2. It is suggested that the lower level of these enzymes, except sucrose-UDP glucosyltransferase, might be responsible for the reduced accumulation of starch in Opaque-2 endosperm during later stages of endosperm development.  相似文献   

18.
19.
20.
The maize cob presents an excellent opportunity to screen visually for mutations affecting assimilate partitioning in the developing kernel. We have identified a defective kernel mutant termed rgf1, reduced grain filling, with a final grain weight 30% of the wild type. In contrast with most defective endosperm mutants, rgf1 shows gene dosage-dependent expression in the endosperm. rgf1 kernels possess a small endosperm incompletely filling the papery pericarp, but embryo development is unaffected and the seeds are viable. The mutation conditions defective pedicel development and greatly reduces expression of endosperm transfer layer-specific markers. rgf1 exhibits striking morphological similarities to the mn1 mutant, but maps to a locus approximately 4 cM away from mn1 on chromosome 2 of maize. Despite reduced starch accumulation in the mutant, no obvious lesion in starch biosynthesis has been detected. Free sugar levels are unaltered in rgf1 endosperm. Rates of sugar uptake, measured over short (8 h) periods in cultured kernels, are increased in rgf1 compared to the wild type. rgf1 and wild-type kernels, excised at 5 DAP and cultured in vitro also develop differently in response to variations in sugar regime: glucose concentrations above 1% arrest placentochalazal development of rgf1 kernels, but have no effect on cultured wild-type kernels. These findings suggest that either uptake or perception of sugar(s) in endosperm cells at 5-10 DAP determines the rgf1 kernel phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号