共查询到20条相似文献,搜索用时 8 毫秒
1.
The distribution of alpha 1-adrenergic receptors in rat liver subcellular fractions was studied using the alpha 1-adrenergic receptor ligand [3H]prazosin. The highest number of [3H]prazosin binding sites was found in a plasma membrane fraction followed by 2 Golgi and a residual microsomal fraction, the numbers of binding sites were 1145, 845, 629 and 223 fmol/mg protein, respectively. When the binding in these fractions was compared with the activity of plasma membrane 'marker' enzymes in the same fractions a relative enrichment of [3H]prazosin binding sites was found in the residual microsomes and one of the Golgi fractions. Photoaffinity labelling with 125I-arylazidoprazosin in combination with SDS-polyacrylamide gel electrophoresis revealed the specific binding to 40 and 23 kDa entities in a Golgi fraction, while in plasma membranes the binders had an apparent molecular mass of 36 and 23 kDa. When [3H]prazosin was injected in vivo into rat portal blood followed by subcellular fractionation of liver, a pattern of an initial rapid decline and thereafter a slow decline of radioactivity was noted in all fractions. Additionally, in the two Golgi fractions a transient accumulation of radioactivity occurred between 5 and 10 min after the injection. The ED50 values for displacement of [3H]prazosin with adrenaline was lowest in the plasma membrane fraction, followed by the residual microsomes and Golgi fractions, the values were 10(-6), 10(-5) and 10(-4) mol/l, respectively. On the basis of lack of correlation between distribution of alpha 1-adrenergic antagonist binding and adenylate cyclase activity, differences in the molecular mass of alpha 1-adrenergic antagonist binders, differences in the kinetics of in vivo binding and accumulation of [3H]prazosin and also differences in agonist affinity between plasma membrane and Golgi fractions, it is concluded that alpha 1-adrenergic receptors are localized to low-density intracellular membranes involved in receptor biosynthesis and endocytosis. 相似文献
2.
3.
4.
The subcellular distribution of rat liver porin was investigated using the immunoblotting technique and monospecific antisera against the protein isolated from the outer membrane of rat liver mitochondria. Subfractionation of mitochondria into inner membranes, outer membranes and matrix fractions revealed the presence of porin only in the outer membranes. Porin was also not detected in highly purified subcellular fractions, including plasma membranes, nuclear membranes, Golgi I and Golgi II, microsomes and lysosomes. Thus, liver porin is located exclusively in the outer mitochondrial membrane. 相似文献
5.
6.
7.
Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver. 总被引:2,自引:0,他引:2 下载免费PDF全文
L Schepers M Casteels K Verheyden G Parmentier S Asselberghs H J Eyssen G P Mannaerts 《The Biochemical journal》1989,257(1):221-229
The subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase were studied in rat liver and were compared with those of palmitoyl-CoA synthetase and choloyl-CoA synthetase. Trihydroxycoprostanoyl-CoA synthetase and choloyl-CoA synthetase were localized almost completely in the endoplasmic reticulum. A quantitatively insignificant part of trihydroxycoprostanoyl-CoA synthetase was perhaps present in mitochondria. Peroxisomes, which convert trihydroxycoprostanoyl-CoA into choloyl-CoA, were devoid of trihydroxycoprostanoyl-CoA synthetase. As already known, palmitoyl-CoA synthetase was distributed among mitochondria, peroxisomes and endoplasmic reticulum. Substrate- and cofactor- (ATP, CoASH) dependence of the three synthesis activities were also studied. Cholic acid and trihydroxycoprostanic acid did not inhibit palmitoyl-CoA synthetase; palmitate inhibited the other synthetases non-competitively. Likewise, cholic acid inhibited trihydroxycoprostanic acid activation non-competitively and vice versa. The pH curves of the synthetases did not coincide. Triton X-100 affected the activity of each of the synthetases differently. Trihydroxycoprostanoyl-CoA synthetase was less sensitive towards inhibition by pyrophosphate than choloyl-CoA synthetase. The synthetases could not be solubilized from microsomal membranes by treatment with 1 M-NaCl, but could be solubilized with Triton X-100 or Triton X-100 plus NaCl. The detergent-solubilized trihydroxycoprostanoyl-CoA synthetase could be separated from the solubilized choloyl-CoA synthetase and palmitoyl-CoA synthetase by affinity chromatograpy on Sepharose to which trihydroxycoprostanic acid was bound. Choloyl-CoA synthetase and trihydroxycoprostanoyl-CoA synthetase could not be detected in homogenates from kidney or intestinal mucosa. The results indicate that long-chain fatty acids, cholic acid and trihydroxycoprostanic acid are activated by three separate enzymes. 相似文献
8.
Farnesyl protein transferase (FPT) activity was measured in rat liver subcellular fractions by using an unspecific acceptor for the farnesyl groups. The highest specific activity was found in mitochondria and it exceeded that of the microsomes three-fold. Considerably lower specific activities were found in the nuclei and cytosol. Further subfractionation revealed that the mitochondrial FPT activity is located in the matrix. The beta-subunit of the mitochondrial enzyme has an apparent molecular mass of 46 kDa, which is similar to its cytosolic counterpart. The results suggest that protein farnesylation can take place in a number of subcellular organelles. 相似文献
9.
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well. 相似文献
10.
11.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. 相似文献
12.
13.
Glycerylphosphorylcholine phosphodiesterase in rat liver. Subcellular distribution and localization in plasma membranes 下载免费PDF全文
Katherine A. Lloyd-Davies Robert H. Michell Roger Coleman 《The Biochemical journal》1972,127(2):357-368
1. A simple new assay for glycerylphosphorylcholine phosphodiesterase is described, in which radioactive glycerylphosphorylcholine is used as substrate and the reaction products are separated by adsorption on an anion-exchange resin. 2. Rat liver subcellular fractions contained both particulate (58%) and soluble (42%) glycerylphosphorylcholine phosphodiesterase. Both activities released free choline from glycerylphosphorylcholine. 3. The particulate glycerylphosphorylcholine phosphodiesterase was recovered mainly in the nuclear and microsomal fractions and showed a distribution similar to those of 5'-nucleotidase and alkaline phosphodiesterase I, both of which are constituents of the liver plasma membrane. 4. During purification of plasma membranes glycerylphosphorylcholine phosphodiesterase, 5'-nucleotidase and alkaline phosphodiesterase I showed largely similar behaviour, indicating that glycerylphosphorylcholine phosphodiesterase is also localized in liver plasma membranes. Slight differences in the distributions of these three enzymes in density-gradient separations are discussed in relation to the possibility that they are unevenly distributed on different areas of the cell surface. 5. The differences between glycerylphosphorylcholine phosphodiesterase and alkaline phosphodiesterase I indicate that these two activities are not functions of a single enzyme. 6. The glycerylphosphorylcholine phosphodiesterase of liver plasma membranes has a pH optimum of 8.5 and a K(m) for glycerylphosphorylcholine of 0.95mm. It is inhibited by EDTA and fully reactivated by a variety of bivalent cations (and Fe(3+)). 相似文献
14.
Subcellular distribution of pyruvate (glyoxylate) aminotransferases in rat liver. 总被引:9,自引:3,他引:6 下载免费PDF全文
The distribution of pyruvate (glyoxylate) aminotransferases in the particulate fraction of rat liver homogenates was examined by centrifugation in a sucrose density graident. Aminotransferase activities towards serine, phenylalanine and histidine with pyruvate and those towards phenylalanine and histidine with glyoxylate were nearly identically distributed. Some 50-55% of the particulate activity was localized in the peroxisomes and the remainder in the mitochondria. Most of alanine-glyoxylate aminotransferase activity was localized in the mitochondria, with some activity in the peroxisomes. Glucagon injection resulted in increases of these enzyme activities in the mitochondria, but not in the peroxisomes. 相似文献
15.
After in vivo labeling with [75Se]selenite, the intracellular distribution of selenoproteins in the liver was investigated in selenium-adequate and selenium-deficient rats. In the subcellular fractions, which were obtained by differential centrifugation, the proteins were separated by means of SDS-PAGE and the selenium compounds were identified via their 75Se activity. In this way twelve selenium-containing proteins or protein subunits with molecular weights between 12,100 and 75,400 were found. Glutathione peroxidase was concentrated in the cytosol and in the mitochondria. With the newly detected selenoproteins, some were enriched in the cytosol, one was mainly found in the nuclear fraction and some, which were present mainly in the mitochondrial and microsomal fractions, are most probably membrane-bound. In the liver of selenium-depleted rats the selenium administered was used predominantly to restore the levels of some of the newly found selenoproteins, while in the liver of selenium-adequate animals most of the selenium retained was incorporated into the glutathione peroxidase. The differences in the distribution among the subcellular fractions and the specific incorporation of the element in selenium deficiency into certain compounds suggest that there are several metabolic pathways for selenium and that the selenoproteins are involved in several different processes of intracellular metabolism. 相似文献
16.
The subcellular distribution and certain properties of rat liver aldehyde dehydrogenase are investigated. The enzyme is shown to be localized in fractions of mitochondria and microsomes. Optimal conditions are chosen for detecting the aldehyde dehydrogenase activity in the mentioned fractions. The enzyme of mitochondrial fraction shows the activity at low (0,03-0.05 mM; isoenzyme I) and high (5 mM; isoenzyme II) concentrations of the substrate. The seeming Km and V of aldehyde dehydrogenase from fractions of mitochondria and microsomes of rat liver are calculated, the acetaldehyde and NAD+ reaction being used as a substrate. 相似文献
17.
18.
Two molecular variants of bovine alpha1-fetoprotein were separated by affinity chromatography of fetal calf serum on a concanavalin A-Sepharose column. Radialimmunodiffusion assay of bovine alpha1-fetoprotein revealed that 29% of the alpha1-fetoprotein in fetal serum lacked concanavalin A-binding activity whilst 71% of the alpha1-fetoprotein was capable of binding to the lectin. These two bovine alpha1-fetoprotein variants show antigenic identity suggesting that the polypeptide chain rather than the carbohydrate moiety of the alpha1-fetoprotein molecule is the antigenic determinant. 相似文献
19.
Three rat alpha 1-fetoprotein fractions were obtained by chromatography on concanavalin-A--Sepharose: one non-reactive, one weakly reactive and one reactive to concanavalin A. The non-reactive and reactive variants were found to vary in the structure of their carbohydrate chains while the conformation of the weakly reactive form may modulate the accessibility of these chains to the lectin. N-Glycosidically linked glycans from unfractionated alpha 1-fetoprotein were isolated and chemically characterized. Particular attention was paid to develop sensitive methods based upon hydrazinolysis, quantitative re-N-acetylation of glycans with [14C]acetic anhydride and thin-layer chromatography of labeled compounds. With the aid of these methods two main kinds of glycans (1a and 2a) were obtained and fractionated on concanavalin-A--Sepharose into non-reactive (1a) and reactive (2a) molecules. Moreover it was demonstrated that each alpha 1-fetoprotein variant contained either two glycans 1a or two glycans 2a, not randomly, but a pair of the identical carbohydrate chains at the two glycosylation sites. 相似文献
20.
G Barrera M Parola L Paradisi L Albin M U Dianzani 《Cell biochemistry and function》1987,5(2):129-133
Disturbed cellular calcium homeostasis has been observed during CCl4 poisoning, with an increase in calcium content 1 h after administration. Intracellular increase of calcium may be expected to alter membrane/cytosol distribution of calmodulin (CaM). This paper investigates changes in rat liver subcellular CaM distribution 30 min, 1 h and 2 h after CCl4 intoxication. The whole liver value remained unchanged, whereas the nuclear fraction increased and the microsomal and cytosolic fraction decreased. This may suggest that CaM is involved in the several liver cell alterations caused by CCl4 poisoning. 相似文献