首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two thermostable lipases were isolated and characterized from Thermosyntropha lipolytica DSM 11003, an anaerobic, thermophilic, alkali-tolerant bacterium which grows syntrophically with methanogens on lipids such as olive oil, utilizing only the liberated fatty acid moieties but not the glycerol. Lipases LipA and LipB were purified from culture supernatants to gel electrophoretic homogeneity by ammonium sulfate precipitation and hydrophobic interaction column chromatography. The apparent molecular masses of LipA and LipB determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 50 and 57 kDa, respectively. The temperature for maximal activity of LipA and LipB was around 96°C, which is, so far as is known, the highest temperature for maximal activity among lipases, and the pH optima for growth determined at 25°C (pH25°C optima) were 9.4 and 9.6, respectively. LipA and LipB at 100°C and pH25°C 8.0 retained 50% activity after 6 and 2 h of incubation, respectively. Both enzymes exhibited high activity with long-chain fatty acid glycerides, yielding maximum activity with trioleate (C18:1) and, among the p-nitrophenyl esters, with p-nitrophenyl laurate. Hydrolysis of glycerol ester bonds occurred at positions 1 and 3. The activities of both lipases were totally inhibited by 10 mM phenylmethylsulfonyl fluoride and 10 mM EDTA. Metal analysis indicated that both LipA and LipB contain 1 Ca2+ and one Mn2+ ion per monomeric enzyme unit. The addition of 1 mM MnCl2 to dialyzed enzyme preparations enhanced the activities at 96°C of both LipA and LipB by threefold and increased the durations of their thermal stability at 60°C and 75°C, respectively, by 4 h.  相似文献   

2.
Two novel and versatile bacterial consortia were developed for the biodegradation of hydrocarbons. They were isolated from crude oil from the Cormorant Field in the North Sea (MPD-7) and from sediment associated with mangrove roots (MPD-M). The bacterial consortia were able to degrade both aliphatic and aromatic hydrocarbons in crude oils very effectively in seawater (35 g/L NaCl) and synthetic media containing 0 to 100 g/L NaCl (1.7 M). Salinities over twice that of normal seawater decreased the biodegradation rates. However, even at the highest salinity biodegradation was significant. Ratios of nC17 to pristane and nC18 to phytane were significantly lowered across the range of salinity. The lowest values were at 0 and 20 g/L (0.34 M). Phytane was degraded in preference to pristane. The degradation of these compounds was constant over the salinity range, with evidence of a slight increase for consortium MPD-M with increasing salinity. In general, the consortium isolated from mangrove root sediments was more efficient in metabolizing North Sea crude oil than the consortium isolated from Cormorant crude oil. The 5 strains that comprise MPD-M have been tentatively identified as species of the genera Marinobacter, Bacillus, and Erwinia. This is the first report of hydrocarbon-degrading consortia isolated from crude oil and mangrove sediments that are capable of treating oily wastes over such a wide range of salinity. Received June 30, 1999; accepted May 29, 2000.  相似文献   

3.
Four methanogenic consortia which degraded 2-chlorophenol, 3-chlorophenol, 2-chlorobenzoate, and 3-chlorobenzoate, respectively, and one nitrate-reducing consortium which degraded 3-chlorobenzoate were characterized. Degradative activity in these consortia was maintained by laboratory transfer for over 2 years. In the methanogenic consortia, the aromatic ring was dechlorinated before mineralization to methane and carbon dioxide. After dechlorination, the chlorophenol consortia converted phenol to benzoate before mineralization. All methanogenic consortia degraded both phenol and benzoate. The 3-chlorophenol and 3-chlorobenzoate consortia also degraded 2-chlorophenol. No other cross-acclimation to monochlorophenols or monochlorobenzoates was detected in the methanogenic consortia. The consortium which required nitrate for the degradation of 3-chlorobenzoate degraded benzoate and 4-chlorobenzoate anaerobically in the presence of KNO3, but not in its absence. This consortium also degraded benzoate, but not 3-chlorobenzoate, aerobically.  相似文献   

4.
Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.  相似文献   

5.
The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster. Our studies reveal different levels of 16S rRNA gene diversity, ranging from 3 to 18 operational taxonomic units (OTUs), as well as variability in community membership across the three enrichment cultures. By comparison, glycosyl hydrolase family 48 (GHF48) diversity analyses revealed a narrower breadth of novel clostridial genes associated with cultured and uncultured cellulose degraders. The novel GHF48 genes identified in this study were related to the novel clostridia Clostridium straminisolvens and Clostridium clariflavum, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured species.The exploration and understanding of cellulose fermentation capabilities in nature could inform and enable industrial processes converting cellulosic biomass to fuels and other products. Enrichment of microbial communities that can utilize cellulose is useful in this context for the identification of novel organisms, novel metabolisms, and novel functions. Of particular interest are communities that can utilize cellulose at high temperatures and under anaerobic conditions, featuring high rates of solubilization under conditions where the energy and the reducing power of substrates are conserved in potentially useful fermentation products.Some evidence indicates that cocultures may be able to utilize cellulose more fully and produce higher concentrations of ethanol than pure cultures of model cellulolytic organisms such as Clostridium thermocellum and Clostridium straminisolvens (16, 20, 34). An initial step toward understanding the functional roles of community members in cooperative cellulose degradation is answering the question of what organisms are present in cellulolytic consortia obtained from nature. Currently, diversity estimation methods applied to cellulolytic communities range from traditional methods targeting the 16S rRNA gene (4, 12) to complex metagenomic analyses targeting the breadth of functional genes present in genomes of mixed cultures and the environment (3).From a functional gene standpoint, cellulase systems are complex assemblages of multifunctional glycosyl hydrolases. Even particularly relevant families, such as family 5 and family 9, tend to include hydrolases with multiple substrate specificities, deep evolutionary roots, and extensive sequence diversity within the same organism (19). However, family 48 glycosyl hydrolases include a select group of cellulosomal and unbound cellulases thought to play an essential role in cellulose solubilization by model cellulolytic clostridia (5, 7, 15), actinobacteria (6, 13), and anaerobic fungi (31). One key feature of this family of glycosyl hydrolases (mostly exoglucanases) is their ability to enhance cellulose solubilization in synergistic interactions with family 9 glycosyl hydrolases (2, 13). But unlike the latter, and with the notable exception of CelS and CelY in Clostridium thermocellum, family 48 hydrolases are present mostly in single copies in the genomes of cellulolytic microbes, making family 48 hydrolase genes a desirable target for primer design and molecular characterization.In this paper we describe the enrichment of microbial communities from a thermophilic compost pile and provide an assessment of diversity in stable cellulolytic enrichments by addressing total bacterial diversity using the 16S rRNA gene as well as introducing a novel method to assess functional diversity in cellulolytic consortia by targeting glycosyl hydrolase family 48 (GHF48) genes.  相似文献   

6.
The acetohydroxy-acid synthetases from two extreme bacterial thermophiles, Thermus aquaticus and Bacillus sp., have been studied. The two enzymes have different pH optima, 8 and 6, respectively, and both are feedback inhibited by valine. The inhibition is of interest because it is not expressed below 60 C, but only at higher temperatures which are optimal for catalytic activity. Valine inhibition in T. aquaticus was noncompetitive, whereas in Bacillus sp., it was competitive. Isoleucine (10(-3) M) also inhibited the two enzymes, whereas leucine (10(-3) M) did not. There was no concerted feedback when the amino acids were added in together. The sensitivity of the enzymes to valine could not be removed by HgCl(2). Both enzymes required Mg(2+) and thiamine pyrophosphate for optimal activity, whereas only the enzyme from T. aquaticus required flavine adenine dinucleotide in addition. None of these cofactors was essential for the feedback inhibition caused by valine. The enzymes from both bacteria could be repressed, but only in the presence of all three branched-chain amino acids indicating that, as in Escherichia coli and Salmonella typhimurium, the repression system is multivalent.  相似文献   

7.
In order to investigate the mechanism of microbial growth at elevated temperatures, it was tried to isolate different thermophilic microorganisms from wide origins, such as soils, composts, manure piles and hot spring waters. As the result, 5 strains of extremely thermophilic bacteria, the maximum, the optimum and the minimum temperatures for growth of which were 80, 70~75, and 40°C, respectively, were isolated from Izu-Atagawa hot spring and Beppu hot springs. These bacteria were gram-negative, yellow-pigmented, non-motile and non-sporulating rods of 0.5~0.7 μ in diameter and 2~5 μ in length. They were heterotrophs requiring several amino acids (such as glutamate, aspartate, et al.) and vitamins (such as biotin, folic acid and p-aminobenzoic acid) and grew well at neutral to slight alkali pH. The content of GC pairs of DNAs from the 5 strains was 69~70%, and this seemed to be one of the highest values in bacteria so far known. Among the 5 strains, strain AT–62 was named as Thermus flavus sp. n. AT–62 from its morphological and physiological characteristics. Comparison between Thermus flavus and other extremely thermophilic bacteria as Thermus aquaticus and Flavobacterium thermophilum is described and discussed in reference to classification of extremely thermophilic bacteria.  相似文献   

8.
Ribosomes were isolated from three mesophilic and three thermophilic strains of Bacillus. The ribosomes consisted of about 55% protein and 45% ribonucleic acid. Average ratios for the absorbance at 260/235 and 260/280 mmu were 1.77 and 1.92 for the mesophiles and 1.63 and 1.84 for the thermophiles. Ultracentrifugation revealed mainly components with sedimentation coefficients of about 30, 50, 70, 100, and 120S. All the preparations were shown to contain a ribonuclease which, in the presence of ethylenediaminetetraacetic acid, led to ribosome breakdown as measured by the increase in acid-soluble nucleotides. The stability of the ribosomes from the thermophiles was consistently greater than that of the ribosomes from the mesophiles. After 5 hr at 37 C, the breakdown was about 80% for the ribosomes from the mesophiles and 55 to 70% for those from the thermophiles. At 60 C, the ribosomes from the mesophiles were broken down slightly more and at a faster rate than those from the thermophiles. At temperatures above 60 C, the breakdown was again more pronounced for the ribosomes from the mesophiles.  相似文献   

9.
Cellulolytic activities of three bacterial consortia derived from a forest soil sample from Chaco region, Argentina, were characterized. The phylogenetic analysis of consortia revealed two main highly supported groups including Achromobacter and Pseudomonas genera. All three consortia presented cellulolytic activity. The carboxymethylcellulase (CMCase) and total cellulase activities were studied both quantitatively and qualitatively and optimal enzymatic conditions were characterized and compared among the three consortia. Thermal and pH stability were analyzed. Based on its cellulolytic activity, one consortium was selected for further characterization by zymography. We detected a specific protein of 55 kDa with CMCase activity. In this study, we have shown that these consortia encode for cellulolytic enzymes. These enzymes could be useful for lignocellulosic biomass degradation into simple components and for different industrial applications.  相似文献   

10.
Liu B  Wu S  Song Q  Zhang X  Xie L 《Current microbiology》2006,53(2):163-166
Bacteriophages of thermophiles are of great interest due to their important roles in many biogeochemical and ecological processes. However, no virion has been isolated from deep-sea thermophilic bacteria to date. In this investigation, two lytic bacteriophages (termed Bacillus virus W1 and Geobacillus virus E1) of thermophilic bacteria were purified from deep-sea hydrothermal fields in the Pacific for the first time. Bacillus virus W1 (BVW1) obtained from Bacillus sp. w13, had a long tail (300nm in length and 15 nm in width) and a hexagonal head (70 nm in diameter). Another virus, Geobacillus virus E1 (GVE1) from Geobacillus sp. E26323, was a typical Siphoviridae phage with a hexagonal head (130 nm in diameter) and a tail (180 nm in length and 30 nm in width). The two phages contained double-stranded genomic DNAs. The genomic DNA sizes of BVW1 and GVE1 were estimated to be about 18 and 41 kb, respectively. Based on SDS-PAGE of purified virions, six major proteins were revealed for each of the two phages. The findings in our study will be very helpful to realize the effect of virus on thermophiles as well as the communities in deep-sea hydrothermal fields.  相似文献   

11.
Xylanases from alkalophilic thermophilic Bacillus spp. Wl and W2 were purified and characterized. The xylanases from the two strains were fractionated into two active components (I and II) by DEAE-Toyopearl 650M chromatography. Components I from the two strains had similar properties: optimum pH, 6.0; optimum temperature, 65°C; isoelectric point, pH 8.5 and 8.3; molecular weight, 21,500 and 22,500; and Michaelis constant, 4.5 and 4.0mg-xylan/ml. Components II from the two strains also had similar properties: optimum pH, 7.0~9.0 and 7.0~9.5; optimum temperature, 70°C; isoelectric point, pH 3.6 and 3.7; molecular weight, 49,500 and 50,000; and Michaelis constant, 0.95 and 0.57mg-xylan/ml. The activities of components I and II were inhibited by Hg++ and Cu++. Components I hydrolyzed xylan to yield xylobiose and higher oligomers, but components II produced xylose other than xylobiose and xylooligomers.  相似文献   

12.
We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur–aromatic compounds (31–55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.  相似文献   

13.
We describe the molecular characteristics of Scytalidium thermophilum isolated from Japanese soil. The S. thermophilum isolates produced higher xylanase activity than Humicola lanuginosa isolated from Japanese soil. A G/11 family xylanase-encoding gene was detected in the S. thermophilum genome by using the polymerase chain reaction technique. The S. thermophilum AF101-3 strain, which was one of the isolates in this study, grew well at 37°C and 50°C, and contained the maximum xylanase activity detected among the isolates. Phylogenetic analysis revealed that the S. thermophilum strains isolated from Japanese soil were clustered in a different group from the S. thermophilum strains reported by Lyons et al. [Mycol Res 104:1431, 2000], suggesting that the S. thermophilum strains isolated in this study are genetically new isolates. Therefore, the genetic diversity of S. thermophilum might be higher than that of H. lanuginosa. Moreover, this is the first report about detection of a xylanase-encoding gene in S. thermophilum. RID= ID= <E5>Correspondence to: </E5>T. Morinaga; <E5>email:</E5> tmorina&commat;bio.hiroshima-pu.ac.jp Received: 3 July 2002 / Accepted: 25 September 2002  相似文献   

14.
Two cellulolytic thermophilic bacterial strains, CS-3-2 and CS-4-4, were isolated from decayed cornstalk by the addition of growth-supporting factors to the medium. According to 16S rRNA gene-sequencing results, these strains belonged to the genus Clostridium and showed 98.87% and 98.86% identity with Clostridium stercorarium subsp. leptospartum ATCC 35414T and Clostridium cellulosi AS 1.1777T, respectively. The endoglucanase and exoglucanase activities of strain CS-4-4 were approximately 3 to 5 times those of strain CS-3-2, whereas the β-glucosidase activity of strain CS-3-2 was 18 times higher than that of strain CS-4-4. The xylanase activity of strain CS-3-2 was 9 times that of strain CS-4-4, whereas the β-xylosidase activity of strain CS-4-4 was 27 times that of strain CS-3-2. The enzyme activities in spent cultures following cocultivation of the two strains with cornstalk as the substrate were much greater than those in pure cultures or an artificial mixture of samples, indicating synergism of glycoside hydrolase secretomes between the two strains. Quantitative measurement of the two strains in the cocultivation system indicated that strain CS-3-2 grew robustly during the initial stages, whereas strain CS-4-4 dominated the system in the late-exponential phase. Liquid chromatography-tandem mass spectrometry analysis of protein bands appearing in the native zymograms showed that ORF3880 and ORF3883 from strain CS-4-4 played key roles in the lignocellulose degradation process. Both these open reading frames (ORFs) exhibited endoglucanase and xylanase activities, but ORF3880 showed tighter adhesion to insoluble substrates at 4, 25, and 60°C owing to its five carbohydrate-binding modules (CBMs).  相似文献   

15.
目的:从腾冲热海温泉中分离嗜热芽孢杆菌噬菌体,并初步分析其特征。方法:采用双层平板法分离纯化嗜热芽孢杆菌噬菌体,对分离得到的噬菌体进行电镜形态观察,按照感染复数(MOI)分别为0.01、0.1、1.0、10和100加入噬菌体纯培养液和宿主菌,55℃、160r/min培养8h后测定噬菌体滴度,并进行噬菌体的热稳定性和pH稳定性分析。结果:从腾冲热海温泉中分离得到的噬菌体为二十面体型;其感染宿主菌NHH4形成清晰的噬菌斑,最适MOI为1.0,最适感染温度为55℃,最适感染pH值为7.5。将这株噬菌体命名为TBIP1。结论:从腾冲热海温泉中分离得到的噬菌体TBIP1为典型的二十面体型,当MOI为1.0时,TBIP1感染其宿主菌产生的子代噬菌体滴度最高。  相似文献   

16.
对在山东、陕西及云南采集的标本进行了研究 ,鉴定出毁丝霉属 (MyceliophthoraCost)中的 2个嗜热型真菌新记录种 ,即弗格斯毁丝霉 [M .fergusii(vanKlopotek)vanOorschot]和嗜热毁丝霉 [M .thermophila (Apinis)vanOorschot],并对其进行了描述和讨论。凭证标本保存在山东农业大学植物病理学标本室 (HSAUP)。  相似文献   

17.
18.
Bacteriophages lysing strains of Thermomonospora alba and T. fusca were isolated, following specific enrichment, from vegetable composts. Four Thermomonospora phages were distinguished by plaque morphology and host range. Electron microscopy of phage particles, termperature inactivation profiles, and electrophoretic analyses of major virion proteins and genomic DNA were used in the comparison and initial characterization of these phages. The four phages studied possessed polyhedral heads and long tails; genomes were linear double-stranded DNA molecules, 35 to 45 kilobases in length, which probably contain cohesive ends. Transfection of Thermomonospora protoplasts with purified genomic DNA from one of the phages was demonstrated.  相似文献   

19.
The temporal stability and diversity of bacterial species composition as well as the antilisterial potential of two different, complex, and undefined microbial consortia from red-smear soft cheeses were investigated. Samples were collected twice, at 6-month intervals, from each of two food producers, and a total of 400 bacterial isolates were identified by Fourier-transform infrared spectroscopy and 16S ribosomal DNA sequence analysis. Coryneform bacteria represented the majority of the isolates, with certain species being predominant. In addition, Marinolactobacillus psychrotolerans, Halomonas venusta, Halomonas variabilis, Halomonas sp. (106 to 107 CFU per g of smear), and an unknown, gram-positive bacterium (107 to 108 CFU per g of smear) are described for the first time in such a consortium. The species composition of one consortium was quite stable over 6 months, but the other consortium revealed less diversity of coryneform species as well as less stability. While the first consortium had a stable, extraordinarily high antilisterial potential in situ, the antilisterial activity of the second consortium was lower and decreased with time. The cause for the antilisterial activity of the two consortia remained unknown but is not due to the secretion of soluble, inhibitory substances by the individual components of the consortium. Our data indicate that the stability over time and a potential antilisterial activity are individual characteristics of the ripening consortia which can be monitored and used for safe food production without artificial preservatives.  相似文献   

20.
Abstract Microbial biomass and community structure in paddy rice soil during the vegetation period of rice were estimated by analysis of their phospholipid fatty acids (PLFA), hydroxy fatty acids of lipopolysaccharides (LPS-HYFA), and phospholipid ether lipids (PLEL) directly extracted from the soil. A clear change in the composition of the community structure at different sampling periods was observed, indicated by the principal component analysis of the PLFA. A dramatic decline of ester-linked PLFA was observed in the soil samples taken at the second sampling time. In contrast to the ester-linked PLFA, the non-ester-linked PLFA composition did not change. The hydroxy fatty acids of lipopolysaccharides as well as ether lipids decreased consecutively during the observation period. Total microbial abundance was estimated to be (4.1–7.3) × 109 cells g-1 soil (dry weight). About 44% account for aerobic and 32% for facultative anaerobic bacteria, and 24% for archaea, on average. According to the profile and patterns of PLFA in the soil sample, it may be suggested that the paddy soil at the August sampling period contained more abundant facultative anaerobic bacteria (ca. 36%) and archaea (ca. 37%), but the total microbial biomass was significantly lower than in the remaining sampling periods. As the plant approached maturity, the microbial community structure in the soil changed to contain more abundant Gram-negative bacteria and methanotrophs. Received: 23 September 1999; Accepted: 28 February 2000; Online Publication: 12 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号