首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyamine system is very sensitive to different pathological states of the brain and is perturbed after CNS injury. The main modifications are significant increases in ornithine decarboxylase activity and an increase in tissue putrescine levels. Previously we have shown that the specific polyamine oxidase (PAO) inhibitor N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527) reduced the tissue putrescine levels, edema, and infarct volume after transient focal cerebral ischemia in spontaneously hypertensive rats and traumatic brain injury of Sprague-Dawley rats. In the present study, N1-acetyl-spermidine accumulation was greater in injured brain regions compared with sham or contralateral regions following inhibition of PAO by MDL 72527. This indicates spermidine/spermine-N1-acetyltransferase (SSAT) activation after CNS injury. The observed increase in N1-acetylspermidine levels at 1 day after CNS trauma paralleled the decrease in putrescine levels after treatment with MDL 72527. This suggests that the increased putrescine formation at 1 day after CNS injury is mediated by the SSAT/PAO pathway, consistent with increased SSAT mRNA after transient ischemia.  相似文献   

2.
Polyamine reutilization and turnover in brain   总被引:1,自引:0,他引:1  
N1, N2-bis-(2, 3-butadienyl)-1, 4-butanediamine (MDL 72527) is an irreversible, specific inhibitor of polyamine oxidase, which allows one to completely inactivate this enzyme in all organs of an experimental animal. As a result one observes a linear increase of N1-acetylsperimidine and N1-acetylspermine concentrations in brain. The rate of accumulation seems directly proportional to the rate of spermidine, and spermine degradation respectively, and since no compensatory changes of the polyamine synthetic enzymes, were induced by inhibition of polyamine oxidase, the rate of acetyl-polyamine accumulation is assumed to be a measure for polyamine turnover. The decrease of brain putrescine levels by 70 percent in the brains of MDL 72527-treated animals suggests the quantitative significance of putrescine reutilisation. Pretreatment of the animals with D, L--difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase reduced both, polyamine turnover rate and the extent of putrescine reutilization. Inhibition of GAPA-T produced a significant increase of polyamine turnover in brain, in agreement with the known induction of ornithine decarboxylase activity after treatment with inhibitors of GABA-T.  相似文献   

3.
Polyamines are ubiquitous cations that are essential for cell growth, regeneration and differentiation. Increases in polyamine metabolism have been implicated in several neuropathological conditions, including excitotoxicity. However, the precise role of polyamines in neuronal degeneration is still unclear. To investigate mechanisms by which polyamines could contribute to excitotoxic neuronal death, the present study examined the role of the polyamine interconversion pathway in kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures. Treatment of cultures with N1,N(2)-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), an irreversible inhibitor of polyamine oxidase, resulted in a partial but significant neuronal protection, especially in CA1 region. In addition, this pre-treatment also attenuated KA-induced increase in levels of lipid peroxidation, cytosolic cytochrome C release and glial cell activation. Furthermore, pre-treatment with a combination of cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) and MDL 72527 resulted in an additive and almost total neuronal protection against KA toxicity, while the combination of MDL 72527 and EUK-134 (a synthetic catalase/superoxide dismutase mimetic) did not provide additive protection. These data strongly suggest that the polyamine interconversion pathway partially contributes to KA-induced neurodegeneration via the production of reactive oxygen species.  相似文献   

4.
N1-Methyl-N2-(2,3-butadienyl)-1,4-butanediamine (MDL 72521) and N1,N2-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527) are specific, potent, enzyme-activated, irreversible inhibitors of polyamine oxidase in vitro. These compounds are also capable of completely inhibiting polyamine oxidase in mouse tissues at intraperitoneal doses greater than 20 mg/kg. Enzyme activity reappears in the various organs within 2-3 days to 50% of the control values. Irreversible inhibition of polyamine oxidase in mice led to decreased putrescine (30-40%) and spermidine (10-20%) levels in liver and some other organs. At the same time N1-acetylspermidine and, to a lesser extent, N1-acetylspermine were accumulating at rates which are assumed to be related to the rates of polyamine degradation. Even after treatment with polyamine oxidase inhibitors over a period of 6 weeks at doses which produced complete inhibition of polyamine oxidase in all organs, including the brain, neither toxic effects nor changes in body weight or behaviour were observed.  相似文献   

5.
N 1,N 4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527) was considered to be a selective inactivator of FAD-dependent tissue polyamine oxidase. Recently MDL 72527 was reported to induce apoptosis in transformed hematopoietic cells through lysosomotropic effects. Since it is the only useful inhibitor of polyamine oxidase available at present, the re-evaluation of its properties seemed important. Human colon carcinoma-derived SW480 cells and their lymph node metastatic derivatives (SW620) were chosen for our study because they differ in various aspects of polyamine metabolism but have similar polyamine oxidase activities. MDL 72527 inhibited cell growth in a concentration-dependent manner, depleted intracellular polyamine pools, and caused the accumulation of N 1-acetyl derivatives of spermidine and spermine. SW620 cells were more sensitive to the drug than were SW480 cells. At 150 μmol/L MDL 72527, SW620 cells accumulated in S-phase of the cell cycle, showed decreased polyamine transport rate, and showed no increase of polyamine N 1-acetyltransferase activity. In contrast, SW480 cells were not arrested in a particular phase of the cell cycle, showed enhanced polyamine uptake, and showed a mild induction of acetyltransferase. The results suggest that MDL 72527 retains its value as a selective tool in short-term experiments only at concentrations not exceeding those necessary for the inactivation of polyamine oxidase. At concentrations above 50 μmol/L and at exposure times longer than 24 h, it may derange cell functions nonspecifically, and thus blur the results of studies intended to elucidate polyamine oxidase functions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
多胺(Polyamines)是直链多价阳离子碱性胺,包括腐胺(putrescine,PUT),精胺(spermine,SPM),精脒(spermidine,SPD)等。广泛存在于各种组织细胞内,是一种代谢调控物质,在细胞的增殖分化中起着重要作用。脑梗死是成人致残、致死的最常见疾病之一。研究表明,脑缺血后,多胺及其代谢产物增加,能引起梗死面积的扩大及缺血半暗带神经细胞的坏死。其潜在机制尚不明确,可能与缺血后多胺代谢产生腐胺,3-氨基丙醛(3-amidopropanal 3-AP),过氧化氢及丙烯醛等的活性物质有关,它们参与开放钙离子通道,破坏血脑屏障,形成血管源性脑水肿及缺血再灌注性神经性损伤等病理过程。而抑制多胺代谢可有效地缓解缺血后多胺及其代谢产物增加引起的神经损伤。本文就多胺及代谢产物对脑缺血的神经毒性作用及药物抑制多胺代谢治疗脑梗死做一综述。  相似文献   

7.
The influence of catabolic reactions on polyamine excretion.   总被引:10,自引:3,他引:7       下载免费PDF全文
Complete inhibition of polyamine catabolism is possible by combined administration of two compounds. Aminoguanidine (25 mg/kg body wt., intraperitoneally) inhibits all reactions that are catalysed by copper-containing amine oxidases (CuAO). The products of the CuAO-catalysed reactions cannot be reconverted into polyamines (terminal catabolism) and therefore usually escape observation. N1-Methyl-N2-(buta-2,3-dienyl)butane-1,4-diamine (MDL 72521) is a new inhibitor of polyamine oxidase. It inhibits completely the degradation of N1-acetylspermidine and N1-acetylspermine. The enhanced excretion of N1-acetylspermidine in urine after administration of 20 mg of MDL 72521/day per kg body wt. is a measure of the rate of spermidine degradation in vivo to putrescine, and thus of the quantitative significance of the interconversion pathway. From the enhancement of total polyamine excretion by aminoguanidine-treated rats, one can calculate that only about 40% of the polyamines that are destined for elimination are usually observed in the urine, the other 60% being catabolized along the CuAO-catalysed pathways. The normally observed urinary polyamine pattern gives, therefore, an unsatisfactory picture of the actual polyamine elimination. Although aminoguanidine alone is sufficient to block terminal polyamine catabolism, rats that were treated with a combination of aminoguanidine and MDL 72521 excrete more polyamines than those that received aminoguanidine alone. The reason is that a certain proportion of putrescine, which is formed by degradation of spermidine, is normally reutilized for polyamine biosynthesis. In MDL 72521-treated animals this proportion appears in the urine in the form of N1-acetylspermidine. Thus it is possible to determine polyamine interconversion and re-utilization in vivo and to establish a polyamine balance in intact rats by using specific inhibitors of the CuAO and of polyamine oxidase.  相似文献   

8.
Seiler N 《Amino acids》2004,26(4):317-319
Summary. Spermine is a constituent of most eucaryotic cells, however, it is not of vital importance for the vertebrate organism, as is demonstrated by the existence of transgenic (Gy) mice that lack spermine and spermine synthase. In contrast its degradation appears to be of vital importance, since mice die after chronic administration of N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72517). Under this condition spermine accumulates in red blood cells and blood plasma. Lethal toxicity can be avoided by intervals of MDL 72527-free periods. During these periods spermine appears to be directly degraded to spermidine without an intermediary acetylation step within the red blood cells. Since this reaction is of enormous physiological significance, it will be important to characterise the red blood cell spermine oxidase, and it will be particularly important to determine whether this oxidase is identical with the FAD-dependent polyamine oxidase that is considered to be involved in the polyamine interconversion sequence, or whether it is one of the recently characterised spermine oxidase isoenzymes.  相似文献   

9.
In this study we investigated polyamine metabolism during inhibition of two polyamine-catabolizing enzymes. This was performed by treating rats with aminoguanidine [an inhibitor of Cu-dependent amine oxidase (CuAO)], NN'-bis(buta-2,3-dienyl)butane-1,4-diamine [MDL 72527, an inhibitor of FAD-dependent polyamine oxidase (PAO)], tetrachloromethane (hepatotoxic agent) and combinations of these compounds. Emphasis was laid on the origin and possible clinical usefulness of two polyamine metabolites: acetylisoputreanine-gamma-lactam and N1N12-diacetylspermine. Acetylisoputreanine-gamma-lactam is a normal constituent of human and rat urine. Treatment of rats with aminoguanidine led to undetectable urinary levels of acetylisoputreanine-gamma-lactam, whereas MDL 72527 treatment resulted in a 12-fold increase. Under normal conditions this compound represents a minor CuAO catabolite of N1-acetylspermidine, but may become of more importance under CuAO-induced conditions. N1N12-diacetylspermine was undetectable in urine samples from non-pregnant adults and rats, but became detectable after treating rats with MDL 72527. Additional tetrachloromethane poisoning resulted in a 35-fold increase of N1N12-diacetylspermine in urine and its appearance in liver. Hence urinary excretion of N1N12-diacetylspermine during PAO inhibition may serve as a sensitive marker for cell death. This was confirmed by myeloid-leukaemia-bearing rats treated with MDL 72527, which also excreted N1N12-diacetylspermine in urine in relatively high amounts from at least day 14 until spontaneous death.  相似文献   

10.
Ferioli ME  Armanni A 《Amino acids》2003,24(1-2):187-194
To extend the knowledge on the role of polyamine oxidase in thymus physiology, we evaluated the in vivo effect of the polyamine biosynthetic pathway inhibitor mitoguazone. The drug markedly and permanently decreased the enzyme activity in the organ, in which the level of putrescine also decreased at the later times observed. A byproduct of the reaction catalyzed by polyamine oxidase is hydrogen peroxide, a well known inducer of apoptosis. The decrease in polyamine oxidase activity, with the consequent decrease in hydrogen peroxide production, is correlated with a positive effect on thymus physiology. Since mitoguazone has been successfully employed in patients with AIDS-related diseases, in which the reconstitution of the immune function is a favorable prognostic index, we hypothesized that mitoguazone may have the thymus as target organ, and that the decrease in polyamine oxidase activity may have a role in the positive effect of the drug.  相似文献   

11.
MDL 72527 was considered a selective inhibitor of FAD-dependent polyamine oxidases. In the present communication, we demonstrate that MDL 72527 inactivates bovine serum amine oxidase, a copper-containing, TPQ-enzyme, time-dependently at 25 degrees C. In striking contrast, the enzyme remained active after incubation with excessive MDL 72527 at 37 degrees C, even after 70 h of incubation. Inactivation of BSAO with MDL 72527 at 25 degrees C did not involve the cofactor, as was shown by spectroscopy and by reaction with phenylhydrazine. Docking of MDL 72527 is difficult, owing to its size and two lipophilic moieties, and it has been shown that minor changes in reaction rate of substrates cause major changes in K(m) and k(cat)/K(m). We hypothesise that subtle conformational changes between 25 and 37 degrees C impair MDL 72527 from productive binding and prevent the nucleophilic group from reacting with the double bond system.  相似文献   

12.
Polyamine Changes in Reversible Cerebral Ischemia   总被引:4,自引:4,他引:0  
Putrescine, spermidine, and spermine levels were measured in the cortex, caudoputamen, and hippocampus of rats during 30 min of severe forebrain ischemia (induced by occlusion of both carotid and vertebral arteries) and subsequent recirculation. During ischemia, polyamine levels did not change significantly. During postischemic recirculation, however, putrescine levels dramatically increased whereas those of spermine and spermidine did not change, with the exception of the severely damaged caudoputamen, where the concentration declined after 24 h. The increase of putrescine is explained by postischemic activation of ornithine decarboxylase and inhibition of S-adenosylmethionine decarboxylase. It is suggested that the accumulation of putrescine during postischemic recirculation may be responsible for the delayed neuronal death occurring after ischemia.  相似文献   

13.
1. Treatment of mice and rats with the polyamine oxidase inhibitor N1,N4-bis-(2,3-butadienyl)-1,4-butanediamine (MDL 72527) causes a gradual accumulation of spermine in the circulation and a decrease of spermidine concentration. 2. Spermine is mainly localized in the red blood cells. 3. Co-administration of 2-(difluoromethyl)ornithine and MDL 72527 enhances considerably the rate and extent of spermine accumulation in the circulation. 4. It is assumed that the increased rate of spermine accumulation by the two drugs is due to the enhancement of cell death, i.e. spermine accumulation is the result of its release into the circulation from dying cells, not due to physiological release. 5. After discontinuation of polyamine oxidase inhibition spermine appears to be gradually transformed into spermidine by red blood cell polyamine oxidase, obviously without transformation into N1-acetylspermine.  相似文献   

14.
The uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria. Western blot analysis of mitochondrial fractions and immunogold electron microscopy observations of purified mitochondria unequivocally confirmed the presence of a protein recognized by anti-spermine oxidase antibodies in the mitochondrial matrix. Preliminary kinetic characterization showed that spermine is the preferred substrate of this enzyme; lower activity was detected with spermidine and acetylated polyamines. Catalytic efficiency comparable to that of spermine was also found for 1-aminododecane. The considerable effect of ionic strength on the Vmax/KM ratio suggested the presence of more than one negatively charged zone inside the active site cavity of this mitochondrial enzyme, which is probably involved in the docking of positively charged substrates. These findings indicate that the bovine liver mitochondrial matrix contains an enzyme belonging to the spermine oxidase class. Because H2O2 is generated by spermine oxidase activity, the possible involvement of the latter as an important signaling transducer under both physiological and pathological conditions should be considered.  相似文献   

15.
It was known from previous work that specific inhibition of neither ornithine decarboxylase activity nor polyamine oxidase activity produces spermidine depletion by more than 20% in non-growing organs, which are in a steady state with regard to polyamine metabolism. Combined treatment with inactivators of both ornithine decarboxylase and polyamine oxidase for a prolonged time caused, however, a gradual decrease of spermidine levels in liver, kidney and brain of mice by 50% and more. The method is in accordance with the previously suggested role of polyamine interconversion. Inhibition of polyamine oxidase prevents the reutilization for de novo polyamine biosynthesis of putrescine and spermidine, which are formed by oxidative splitting of N1-acetylspermine and N1-acetylspermidine, respectively, and the ornithine decarboxylase inhibitor prevents the compensatory increase of putrescine from ornithine. The findings are further evidence for the physiological significance of polyamine reutilization.  相似文献   

16.
Administration of large, but non-toxic doses of spermidine (0.4–1.25 mmol/kg) led to a substantial increase in putrescine in liver, kidney and a number of other tissues including muscle. The increase in putriscine peaked at 6 h after treatment and was completely prevented by administration of cycloheximide 3 h after the spermidine suggesting that the induction of a new protein was required. This protein is likely to be spermidine N1-acetyltransferase which was induced by the treatment with spermidine and increased 3–4-fold in liver and kidney within 6 h. N1-Acetylspermidine was detected in tissues at this time after spermidine treatment and experiments in which labeled spermidine was given indicated that a substantial fraction of the administered spermidine was converted into N1-acetylspermidine and into putrescine. These results suggest that the rise in putrescine after spermidine treatment is brought about by the production of N1-acetylspermidine which is converted into putrescine by the action of polyamine oxidase. The limiting step in this conversion is the activity of the acetylase which is induced in response to the rise in spermidine content. The acetylase/oxidase pathway, therefore, provides a means by which polyamine levels can be regulated and excess polyamine disposed of.  相似文献   

17.
Elevated expression of ornithine decarboxylase (ODC), the regulatory enzyme in polyamine biosynthesis, targeted to the epidermis is sufficient to promote skin tumor development following a single subthreshold dose of dimethylbenz(a)anthracene (DMBA). Since skin tumor promotion involves recruitment of hair follicle bulge stem cells harboring genetic lesions, we assessed the effect of increased epidermal ODC on recruitment of bulge stem cells in ODC-ER transgenic mice in which ODC activity is induced de novo in adult skin with 4-hydroxytamoxifen (4OHT). Bromodeoxyuridine-pulse labeling and use of K15.CrePR1;R26R;ODC-ER triple transgenic mice demonstrated that induction of ODC activity is sufficient to recruit bulge stem cells in quiescent skin. Because increased ODC activity not only stimulates proliferation but also increases reactive oxygen species (ROS) generation via subsequent induction of polyamine catabolic oxidases, we used an inhibitor of polyamine catabolic oxidase activity, MDL72527, to investigate whether ROS generation by polyamine catabolic oxidases contributes to skin tumorigenesis in DMBA-initiated ODC-ER transgenic skin. Newborn ODC-ER transgenic mice and their normal littermates were initiated with a single topical dose of DMBA. To assess tumor development originating from dormant bulge stem cells that possess DMBA-initiated mutations, epidermal ODC activity was induced in ODC-ER mice with 4OHT 5 weeks after DMBA initiation followed by MDL72527 treatment. MDL72527 treatment resulted in a shorter tumor latency time, increased tumor burden, increased conversion to carcinomas, and lower tumor levels of p53. Thus, elevated epidermal ODC activity promotes tumorigenesis by stimulating the recruitment of bulge stem cells but not via ROS generation by polyamine catabolic oxidases.  相似文献   

18.
19.
We demonstrate, for the first time, a functional polyamine biosynthetic pathway in the malaria parasite Plasmodium falciparum that culminates in the synthesis of spermine. Additionally, we also report putrescine and spermidine salvage in the malaria parasite. Putrescine and spermidine transport in P. falciparum infected red blood cells is a highly specific, carrier mediated and active process, mediated by new transporters that differ from the transporters of uninfected red blood cells in their kinetic parameters, Vmax and km, as well as in their activation energy.  相似文献   

20.
Polyamine degradation was studied in the small intestine from rats fed on a polyamine-supplemented diet. Lactalbumin diet was given to Hooded-Lister rats, with or without 5 mg rat(-1) day(-1) of putrescine or spermidine for 5 days. Polyamine oxidase activity increased with putrescine and spermidine in the diet, whereas spermidine/spermine N(1)-acetyltransferase and diamine oxidase activities were unchanged. We also studied the calcium-dependent and -independent tissue transglutaminase activities, since they can modulate intestinal polyamine levels. Both types of enzymes increased in the cytosolic fraction after putrescine (about 65%) or spermidine (80-100%). Our results indicate that exogenous polyamines stimulate intestinal polyamine oxidase and tissue transglutaminase activities, probably to prevent polyamine accumulation, when other pathways of polyamine catabolism (acetylation and terminal catabolism) are not activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号