首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of species data versus environmental surrogates used in lieu of species data in systematic reserve site selection is still highly debated. We analyse in a case study whether and how the results of reserve network selection are affected by the use of species data versus habitat surrogates (habitat models) for qualitative (presence/absence) and quantitative (population size/habitat quality) information. In a model region, the post-mining landscape south of Leipzig/Germany, we used iterative algorithms to select a network for 29 animal target species from a basic set of 127 sites. The network results differ markedly for the two information types: depending on the representation goal, 18–45% of the selected sites chosen in response to one information type do not appear in the results for the other type. Given the availability of quantitative and hence deeper information, evaluation rules can be used to filter out the best habitats and the largest populations. In our model study, 0–40% less suitable areas were selected when instead of quantitative details only qualitative data were used. In view of various advantages and limitations of the two information types, we propose improving the methodological approach to the selection of networks for animal species by combining different information types.  相似文献   

2.
3.
Multi-level discrete models of genetic networks, or the more general piecewise affine differential models, provide qualitative information on the dynamics of the system, based on a small number of parameters (such as synthesis and degradation rates). Boolean models also provide qualitative information, but are based simply on the structure of interconnections. To explore the relationship between the two formalisms, a piecewise affine differential model and a Boolean model are compared, for the carbon starvation response network in E. coli. The asymptotic dynamics of both models are shown to be quite similar. This study suggests new tools for analysis and reduction of biological networks.  相似文献   

4.
Modelling biological processes using workflow and Petri Net models   总被引:4,自引:0,他引:4  
MOTIVATION: Biological processes can be considered at many levels of detail, ranging from atomic mechanism to general processes such as cell division, cell adhesion or cell invasion. The experimental study of protein function and gene regulation typically provides information at many levels. The representation of hierarchical process knowledge in biology is therefore a major challenge for bioinformatics. To represent high-level processes in the context of their component functions, we have developed a graphical knowledge model for biological processes that supports methods for qualitative reasoning. RESULTS: We assessed eleven diverse models that were developed in the fields of software engineering, business, and biology, to evaluate their suitability for representing and simulating biological processes. Based on this assessment, we combined the best aspects of two models: Workflow/Petri Net and a biological concept model. The Workflow model can represent nesting and ordering of processes, the structural components that participate in the processes, and the roles that they play. It also maps to Petri Nets, which allow verification of formal properties and qualitative simulation. The biological concept model, TAMBIS, provides a framework for describing biological entities that can be mapped to the workflow model. We tested our model by representing malaria parasites invading host erythrocytes, and composed queries, in five general classes, to discover relationships among processes and structural components. We used reachability analysis to answer queries about the dynamic aspects of the model. AVAILABILITY: The model is available at http://smi.stanford.edu/projects/helix/pubs/process-model/.  相似文献   

5.
The tumor suppressor protein, p53, and the oncoprotein, Akt, are involved in a cross talk that could be at the core of a cell's control machinery for switching between survival and death. This cross talk is a combination of reciprocally antagonistic pathways emanating from p53 and Akt, and also involves another tumor suppressor gene, PTEN, and another oncogene, Mdm2; such a connected network of cancer-relevant genes must be significant and demands a critical study. The p53-Akt network is shown in this report to possess the potential to exhibit bistability, a phenomenon in which two stable steady states of the system coexist for a fixed set of control parameter values. A hierarchy of qualitative networks and abstract kinetic models are analyzed and simulated on a computer to demonstrate the robustness of the bistable behavior, which, as argued in this study, is a likely candidate mechanism for a cellular survival-death switch. The analysis applies to cells that are neither p53-null nor Akt-null. The models presented here offer experimental predictions on the identity of control parameters of apoptotic thresholds and on network perturbations (including DNA damage and Akt inhibition) that are sufficient to generate switching between pro-survival and pro-death cellular states.  相似文献   

6.
MOTIVATION: The study of genetic regulatory networks has received a major impetus from the recent development of experimental techniques allowing the measurement of patterns of gene expression in a massively parallel way. This experimental progress calls for the development of appropriate computer tools for the modeling and simulation of gene regulation processes. RESULTS: We present Genetic Network Analyzer (GNA), a computer tool for the modeling and simulation of genetic regulatory networks. The tool is based on a qualitative simulation method that employs coarse-grained models of regulatory networks. The use of GNA is illustrated by a case study of the network of genes and interactions regulating the initiation of sporulation in Bacillus subtilis. AVAILABILITY: GNA and the model of the sporulation network are available at http://www-helix.inrialpes.fr/gna.  相似文献   

7.
MOTIVATION: In the study of the structural flexibility of proteins, crystallographic Debye-Waller factors are the most important experimental information used in the calibration and validation of computational models, such as the very successful elastic network models (ENMs). However, these models are applied to single protein molecules, whereas the experiments are performed on crystals. Moreover, the energy scale in standard ENMs is undefined and must be obtained by fitting to the same data that the ENM is trying to predict, reducing the predictive power of the model. RESULTS: We develop an elastic network model for the whole protein crystal in order to study the influence of crystal packing and lattice vibrations on the thermal fluctuations of the atom positions. We use experimental values for the compressibility of the crystal to establish the energy scale of our model. We predict the elastic constants of the crystal and compare with experimental data. Our main findings are (1) crystal packing modifies the atomic fluctuations considerably and (2) thermal fluctuations are not the dominant contribution to crystallographic Debye-Waller factors. AVAILABILITY: The programs developed for this work are available as supplementary material at Bioinformatics Online.  相似文献   

8.
ABSTRACT: BACKGROUND: Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. RESULTS: We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. CONCLUSIONS: The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.  相似文献   

9.
Structure prediction methods often generate a large number of models for a target sequence. Even if the correct fold for the target sequence is sampled in this dataset, it is difficult to distinguish it from other decoy structures. An attempt to solve this problem using experimental mutational sensitivity data for the CcdB protein was described previously by exploiting the correlation of residue depth with mutational sensitivity (r ~ 0.6). We now show that such a correlation extends to four other proteins with localized active sites, and for which saturation mutagenesis datasets exist. We also examine whether incorporation of predicted secondary structure information and the DOPE model quality assessment score, in addition to mutational sensitivity, improves the accuracy of model discrimination using a decoy dataset of 163 targets from CASP. Although most CASP models would have been subjected to model quality assessment prior to submission, we find that the DOPE score makes a substantial contribution to the observed improvement. We therefore also applied the approach to CcdB and four other proteins for which reliable experimental mutational data exist and observe that inclusion of experimental mutational data results in a small qualitative improvement in model discrimination relative to that seen with just the DOPE score. This is largely because of our limited ability to quantitatively predict effects of point mutations on in vivo protein activity. Further improvements in the methodology are required to facilitate improved utilization of single mutant data.  相似文献   

10.
In this paper we propose and analyze parameter-free models for the mitogen-activated protein kinase (MAPK) pathway in PC12 rat neural cells. Experiments show that the dynamic behavior of this pathway depends on the input growth factor. The response to epidermal growth factor (EGF) is a short peak followed by a relaxation, while the response to nerve growth factor (NGF) is sustained. In the latter case, the system can be driven to a new state, which persists after the stimulus has vanished. Ultimately, these dynamic behaviors correspond to different cell fates: EFG stimulation induces proliferation, while NGF stimulation induces differentiation. The biochemical mechanisms responsible for the different input-dependent dynamic response are still unclear. One hypothesis is that each input generates a specific interaction topology among the kinases. Starting from experimental results that support this hypothesis, we derive and analyze qualitative models for the two network topologies. Our approach is based on invariant set theory and non-smooth Lyapunov functions. We demonstrate analytically that the network behaviors and stability properties are structurally dependent on the topology, and do not depend on specific parameter values of the underlying biochemical interactions.  相似文献   

11.
The epidermal growth factor receptor (EGFR) signaling pathway is probably the best-studied receptor system in mammalian cells, and it also has become a popular example for employing mathematical modeling to cellular signaling networks. Dynamic models have the highest explanatory and predictive potential; however, the lack of kinetic information restricts current models of EGFR signaling to smaller sub-networks. This work aims to provide a large-scale qualitative model that comprises the main and also the side routes of EGFR/ErbB signaling and that still enables one to derive important functional properties and predictions. Using a recently introduced logical modeling framework, we first examined general topological properties and the qualitative stimulus-response behavior of the network. With species equivalence classes, we introduce a new technique for logical networks that reveals sets of nodes strongly coupled in their behavior. We also analyzed a model variant which explicitly accounts for uncertainties regarding the logical combination of signals in the model. The predictive power of this model is still high, indicating highly redundant sub-structures in the network. Finally, one key advance of this work is the introduction of new techniques for assessing high-throughput data with logical models (and their underlying interaction graph). By employing these techniques for phospho-proteomic data from primary hepatocytes and the HepG2 cell line, we demonstrate that our approach enables one to uncover inconsistencies between experimental results and our current qualitative knowledge and to generate new hypotheses and conclusions. Our results strongly suggest that the Rac/Cdc42 induced p38 and JNK cascades are independent of PI3K in both primary hepatocytes and HepG2. Furthermore, we detected that the activation of JNK in response to neuregulin follows a PI3K-dependent signaling pathway.  相似文献   

12.
MOTIVATION: High-throughput technologies now allow the acquisition of biological data, such as comprehensive biochemical time-courses at unprecedented rates. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information will require systematic application of both experimental and computational methods. RESULTS: S-systems are non-linear mathematical approximative models based on the power-law formalism. They provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction and metabolic networks. We describe how the heuristic optimization technique simulated annealing (SA) can be effectively used for estimating the parameters of S-systems from time-course biochemical data. We demonstrate our methods using three artificial networks designed to simulate different network topologies and behavior. We then end with an application to a real biochemical network by creating a working model for the cadBA system in Escherichia coli. AVAILABILITY: The source code written in C++ is available at http://www.engg.upd.edu.ph/~naval/bioinformcode.html. All the necessary programs including the required compiler are described in a document archived with the source code. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.  相似文献   

13.
Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system.  相似文献   

14.
Steady-state expression of self-regulated genes   总被引:1,自引:0,他引:1  
MOTIVATION: Regulatory gene networks contain generic modules such as feedback loops that are essential for the regulation of many biological functions. The study of the stochastic mechanisms of gene regulation is instrumental for the understanding of how cells maintain their expression at levels commensurate with their biological role, as well as to engineer gene expression switches of appropriate behavior. The lack of precise knowledge on the steady-state distribution of gene expression requires the use of Gillespie algorithms and Monte-Carlo approximations. Methodology: In this study, we provide new exact formulas and efficient numerical algorithms for computing/modeling the steady-state of a class of self-regulated genes, and we use it to model/compute the stochastic expression of a gene of interest in an engineered network introduced in mammalian cells. The behavior of the genetic network is then analyzed experimentally in living cells. RESULTS: Stochastic models often reveal counter-intuitive experimental behaviors, and we find that this genetic architecture displays a unimodal behavior in mammalian cells, which was unexpected given its known bimodal response in unicellular organisms. We provide a molecular rationale for this behavior, and we implement it in the mathematical picture to explain the experimental results obtained from this network.  相似文献   

15.
Biological signaling networks comprise the chemical processes by which cells detect and respond to changes in their environment. Such networks have been implicated in the regulation of important cellular activities, including cellular reproduction, mobility, and death. Though technological and scientific advances have facilitated the rapid accumulation of information about signaling networks, utilizing these massive information resources has become infeasible except through computational methods and computer-based tools. To date, visualization and simulation tools have received significant emphasis. In this paper, we present a graph-theoretic formalization of biological signaling network models that are in wide but informal use, and formulate two problems on the graph: the Constrained Downstream and Minimum Knockout Problems. Solutions to these problems yield qualitative tools for generating hypotheses about the networks, which can then be experimentally tested in a laboratory setting. Using established graph algorithms, we provide a solution to the Constrained Downstream Problem. We also show that the Minimum Knockout Problem is NP-Hard, propose a heuristic, and assess its performance. In tests on the Epidermal Growth Factor Receptor (EGFR) network, we find that our heuristic reports the correct solution to the problem in seconds. Source code for the implementations of both solutions is available from the authors upon request.  相似文献   

16.
Inhibitory networks are now recognized as being the controllers of several brain rhythms. However, experimental work with inhibitory cells is technically difficult not only because of their smaller percentage of the neuronal population, but also because of their diverse properties. As such, inhibitory network models with tight links to the experimental data are needed to understand their contributions to population rhythms. However, mathematical analyses of network models with more than two cells is challenging when the cellular models involve biophysical details. We use bifurcation analyses and simulations to show that two-cell analyses can quantitatively predict N-cell (N = 20, 50, 100) network dynamics for heterogeneous, inhibitory networks. Interestingly, multistable states in the two-cell system are manifest as different and distinct coherent network patterns in the N-cell networks for the same parameter sets.  相似文献   

17.
Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model  相似文献   

18.
19.
Although cell polarity is an essential feature of living cells, it is far from being well-understood. Using a combination of computational modeling and biological experiments we closely examine an important prototype of cell polarity: the pheromone-induced formation of the yeast polarisome. Focusing on the role of noise and spatial heterogeneity, we develop and investigate two mechanistic spatial models of polarisome formation, one deterministic and the other stochastic, and compare the contrasting predictions of these two models against experimental phenotypes of wild-type and mutant cells. We find that the stochastic model can more robustly reproduce two fundamental characteristics observed in wild-type cells: a highly polarized phenotype via a mechanism that we refer to as spatial stochastic amplification, and the ability of the polarisome to track a moving pheromone input. Moreover, we find that only the stochastic model can simultaneously reproduce these characteristics of the wild-type phenotype and the multi-polarisome phenotype of a deletion mutant of the scaffolding protein Spa2. Significantly, our analysis also demonstrates that higher levels of stochastic noise results in increased robustness of polarization to parameter variation. Furthermore, our work suggests a novel role for a polarisome protein in the stabilization of actin cables. These findings elucidate the intricate role of spatial stochastic effects in cell polarity, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号