首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r(2) = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 x 10(12) cells; calculated, 1.7 x 10(12) cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.  相似文献   

2.
A Bozorg  ID Gates  A Sen 《Biofouling》2012,28(9):937-951
Biofilm growth can impact the effectiveness of industrial processes that involve porous media. To better understand and characterize how biofilms develop and affect hydraulic properties in porous media, both spatial and temporal development of biofilms under flow conditions was investigated in a translucent porous medium by using Pseudomonas fluorescens HK44, a bacterial strain genetically engineered to luminesce in the presence of an induction agent. Real-time visualization of luminescent biofilm growth patterns under constant pressure conditions was captured using a CCD camera. Images obtained over 8 days revealed that variations in bioluminescence intensity could be correlated to biofilm cell density and hydraulic conductivity. These results were used to develop a real-time imaging method to study the dynamic behavior of biofilm evolution in a porous medium, thereby providing a new tool to investigate the impact of biological fouling in porous media under flow conditions.  相似文献   

3.
Biofilm growth can impact the effectiveness of industrial processes that involve porous media. To better understand and characterize how biofilms develop and affect hydraulic properties in porous media, both spatial and temporal development of biofilms under flow conditions was investigated in a translucent porous medium by using Pseudomonas fluorescens HK44, a bacterial strain genetically engineered to luminesce in the presence of an induction agent. Real-time visualization of luminescent biofilm growth patterns under constant pressure conditions was captured using a CCD camera. Images obtained over 8 days revealed that variations in bioluminescence intensity could be correlated to biofilm cell density and hydraulic conductivity. These results were used to develop a real-time imaging method to study the dynamic behavior of biofilm evolution in a porous medium, thereby providing a new tool to investigate the impact of biological fouling in porous media under flow conditions.  相似文献   

4.
Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r2 = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 × 1012 cells; calculated, 1.7 × 1012 cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.  相似文献   

5.
6.
A novel optical signal element based on homogeneous bioluminescence resonance energy transfer (BRET) was developed for biomolecular detection. A fluorescent dye and alkaline phosphatase (AP) conjugate was used as a reporter and light‐generation element for imaging detection platforms that use a CCD camera or CMOS chip‐based devices. In the presence of a luminescence substrate, the energy from the first light emission of a bioluminescence enzymatic reaction was transferred to fluorescent dyes which were conjugated to an enzyme. This resulted in a second light emission with a shorter wavelength. The second light was localized at the position of target molecules without the diffusion problems present in current technology. To optimize energy transfer efficiency, the ratio of enzyme to fluorophore in the conjugates, the fluorescent dyes used in the conjugates and the luminescence substrates used for BRET were investigated. BRET was demonstrated by using both a CCD camera and a CMOS imaging device. Image spatial resolution was greatly improved compared with conventional chemiluminescence detection. This new signal element opens a door for the direct measurement of fluorescent signals on an imaging chip without an external light source and portable instrumentation normally required for the fluorescent detection of biomolecules. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Regions of DNA containing promoter sequences from a Pseudomonas syringae pv. phaseolicola -specific phage (φ11P) were identified by shotgun cloning into a broad-host-range promoter-probe vector (pQF70). When used in conjunction with the luciferase reporter genes, one of these DNA fragments, 19H, directed gene expression at a level which enabled the subsequent light output (bioluminescence) of single cells of P. syringae pv. phaseolicola to be detected and visualized using a charge-coupled device (CCD). The P. syringae pv. phaseolicola φ11P, 19H and P. aeruginosa φPLS27, HcM promoters gave a 50-fold increase in bioluminescence (maximum relative light output) compared to similar constructs containing other well-characterized promoters, for example, tetracycline. Similar bioluminescent characteristics of the transformed bacterium, were observed during growth with and without antibiotic-selection. When lux + bacteria were inoculated onto French bean leaf ( Phaseolus vulgaris L.), the resultant secondary halo blight lesions were bioluminescent and during phylloplane colonization by the lux + bacterium, bioluminescence on leaf surfaces was detected and imaged by the CCD. Use of these newly identified promoters, combined with the greatly increased sensitivity of bioluminescence detection by the CCD, thus provided a new dimension for the study of natural ecological populations during the bacterial colonization of plants.  相似文献   

8.
Circadian rhythms in acid-stimulated bioluminescence and cell division are observed for at least 16 days in bright continuous light (4.5 milliwatts per square centimeter or 20,000 lux). The photosynthesis rhythm also fails to stop immediately upon transfer of cell suspensions to bright light. After about 4 weeks under these conditions, all rhythms were observed to damp out. In cells transferred from bright light to continuous darkness, the rhythms were reset to about circadian hour 12 to 14, the phase of the beginning of a normal night.  相似文献   

9.
Bioluminescence from the lux-based bacterial reporter Pseudomonas fluorescens HK44 was experimentally investigated under growth substrate-rich and limiting conditions in batch, continuous stirred tank (CSTR), and turbidostat reactors. A mechanistically based, mathematical model was developed to describe bioluminescence based on 1) production and decay of catalytic enzymes, and 2) reactant cofactor availability. In the model, bioluminescence was a function of inducer, growth substrate, and biomass concentration. A saturational dependence on growth substrate concentration accommodated dependence on cofactor availability and inducer concentration to accommodate enzyme production was incorporated in the model. Under growth substrate and inducer limiting conditions in the batch reactor and CSTR, bioluminescence was found to decrease in response to cellular energy limitations. The effective lux system enzyme decay rate was determined in independent measurements to be 0.35 hr(-1) and the model captured most of the bioluminescent behavior, except at long growth times and high cell density.  相似文献   

10.
Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.  相似文献   

11.
It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.  相似文献   

12.
Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10 degrees C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm(2). Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a "real-product" status, and at a low temperature.  相似文献   

13.
Light emission from the bacterial luciferase operon has been variously exploited during last two decades. The use of convenient inducible promoters has granted significant degrees of specificity to whole cell-based assays for high-throughput screening and environmental monitoring. Nevertheless, unexplained unspecific responses have been repeatedly reported. Here, we show that the impairment of the intracellular biochemical equilibrium interferes with the luminescence produced by Escherichia coli and Staphylococcus aureus strains carrying the lux operon under constitutive or inducible control. Compounds as trimethoprim and methotrexate, by indirectly inducing NADPH accumulation, enhance light emission. Conversely, molecules driving the cell toward an oxidized state, as dimethyl sulfoxide, inhibit luminescence. These findings fit into the accepted biochemical pathway for bioluminescence, where NADPH and reducing equivalents are necessary for the production of luciferase substrates, although they do not directly take part into the light-emitting reaction. Moreover, we investigated the influence of induction timing upon the bioluminescence response from inducible reporter systems and demonstrated a correlation between the emitted light and the growth phase at which induction is performed. Our results provide explanations for some unspecific responses recorded so far in whole cell-based luminescent biosensors and emphasize the intrinsic limitations of this kind of reporting system.  相似文献   

14.
Pseudomonas fluorescens HK44 is a lux-based bioluminescent bioreporter capable of emitting light upon exposure to naphthalene, salicylate, and other substituted analogs. The bacterium was inoculated into intermediate-scale field lysimeters and population dynamics were monitored with time. Two methods were used to enumerate cell numbers in soil: a standard selective plating technique with colony hybridization verification and a modified lux-based most-probable-number (lux-MPN) assay based on the detection of bioluminescence. The lux-MPN assay was developed and evaluated as a possible supplement or replacement for the labor-intensive and time-consuming selective plating assay. Comparisons between selective plate counts and lux-MPN population estimates showed similar trends over the 2-year study, except that lux-MPN estimates were consistently less than selective plate counts. Verification of P. fluorescens HK44 genotype through colony hybridization techniques revealed that selective plating was actually overestimating HK44 populations and that lux-MPN values were more closely approximating true HK44 cell densities, except within the first few weeks after inoculation, when lux-MPN estimates underrepresented population densities. Thus, utilizing bioluminescence as a population monitoring tool for lux-based microorganisms was shown to be more effective and precise than standard selective plating techniques, and provided an accurate ecological analysis of P. fluorescens HK44 population dynamics over an extended period. Received: 9 August 1999 / Received revision: 3 November 1999 / Accepted: 4 January 2000  相似文献   

15.
A cell array biosensor for environmental toxicity analysis   总被引:1,自引:0,他引:1  
In this study, a cell-based array technology that uses recombinant bioluminescent bacteria to detect and classify environmental toxicity has been implemented to develop two biosensor arrays, i.e., a chip and a plate array. Twenty recombinant bioluminescent bacteria, having different promoters fused with the bacterial lux genes, were immobilized within LB-agar. About 2 microl of the cell-agar mixture was deposited into the wells of either a cell chip or a 384-well plate. The bioluminescence (BL) from the cell arrays was measured with the use of highly sensitive cooled CCD camera that measured the bioluminescent signal from the immobilized cells and then quantified the pixel density using image analysis software. The responses from the cell arrays were characterized using three chemicals that cause either superoxide damage (paraquat), DNA damage (mitomycin C) or protein/membrane damage (salicylic acid). The responses were found to be dependent upon the promoter fused upstream of the lux operon within each strain. Therefore, a sample's toxicity can be analyzed and classified through the changes in the BL expression from each well. Moreover, a time of only 2 h was needed for analysis, making either of these arrays a fast, portable and economical high-throughput biosensor system for detecting environmental toxicities.  相似文献   

16.
A biochemical oxygen demand (BOD) sensing system based on bacterial luminescence from recombinant Escherichia coli containing lux A-E genes from Vibrio fischeri has been developed. It was possible to use frozen cells of luminescent recombinants of E. coli as the bacterial reagents for measurement. Steady bioluminescence was observed during the incubation time between 90 and 150 min in the presence of a sole carbon source such as glucose, acetate, L-glutamate and BOD standard solution (GGA solution). This disposable bacterial reagent was applied to measure and detect organic pollution due to biodegradable substances in various wastewaters. The obtained values of this study showed a similar correlation with that of the conventional method for BOD determination (BOD5). Bacterial luminescence that was visualized with an imaging system using a charge coupled device (CCD) camera and a photomulti-counter demonstrated that this method could also be used for multi-sample detection of organic pollution due to biodegradable substances by using a microtiter plate. These results suggested for successful achievement of high-though-put detection of BOD in practical.  相似文献   

17.
The luxA, B, C, D, and E genes from Photorhabdus luminescens were cloned and functionally expressed in Saccharomyces cerevisiae to construct a bacterial lux-based yeast bioreporter capable of autonomous bioluminescence emission. The bioreporter was engineered using a series of pBEVY yeast expression vectors that allowed for bi-directional constitutive or inducible expression of the individual luxA, B, C, and E genes. The luxD gene, encoding the acyl-ACP transferase that ultimately supplies the requisite aldehyde substrate for the bioluminescent reaction, was fused to a yeast internal ribosomal entry site (IRES) sequence to ensure high bi-cistronic expression. Although self-generation of bioluminescence was achieved by the bioreporter, the signal was relatively weak and decayed rapidly. To overcome this instability, a flavin oxidoreductase gene (frp) from Vibrio harveyi was co-expressed to provide sufficient concentrations of the FMNH(2) co-factor required for the bioluminescent reaction. Expression of frp with the lux genes not only stabilized but also enhanced bioluminescence to levels approaching 9.0x10(5) times above background.  相似文献   

18.
Pseudomonas fluorescens HK44 is a bioluminescent bioreporter synthesizing light in the presence of naphthalene or salicylate. Upon immobilization, HK44 is useful as an in situ or on-line biosensor of bioavailable naphthalene and salicylate in waste streams or contaminated fields. The bioreporting efficacy of alginate/SrCl2-immobilized HK44 was investigated in simulated groundwater with different pH regimes. When induced with complex (salicylate plus auxiliary energy supplements) and simple (salicylate as the sole energy supplement) inducer solutions, the specific light response was steadier at pH 6 than at pH 7 in a 35-day study. There was no bioluminescence response from cells incubated in groundwater samples with pH below 6. The rate of the luminescence reaction was stable at pH 6 irrespective of the type of inducer solution, indicating the robust physiological status of the bioreporter bacteria. In addition, the quantity of light synthesized was at least one order of magnitude higher with complex inducer solution than with simple inducer solution. The numbers of viable and cultivable cells remained constant in groundwater at pH 6 and 7 (approx. 107 g−1 beads). The numbers decreased by four orders of magnitude (107 to 103) to zero in groundwaters with pH below 6. This study suggested that HK44 is useful for long-term biosensor applications in moderately acidic to neutral groundwater conditions. Received: 6 August 1996 / Received revision: 12 December 1996 / Accepted: 4 January 1997  相似文献   

19.
20.
The bioluminescent bacterium Vibrio fischeri and juveniles of the squid Euprymna scolopes specifically recognize and respond to one another during the formation of a persistent colonization within the host's nascent light-emitting organ. The resulting fully developed light organ contains brightly luminescing bacteria and has undergone a bacterium-induced program of tissue differentiation, one component of which is a swelling of the epithelial cells that line the symbiont-containing crypts. While the luminescence (lux) genes of symbiotic V. fischeri have been shown to be highly induced within the crypts, the role of these genes in the initiation and persistence of the symbiosis has not been rigorously examined. We have constructed and examined three mutants (luxA, luxI, and luxR), defective in either luciferase enzymatic or regulatory proteins. All three are unable to induce normal luminescence levels in the host and, 2 days after initiating the association, had a three- to fourfold defect in the extent of colonization. Surprisingly, these lux mutants also were unable to induce swelling in the crypt epithelial cells. Complementing, in trans, the defect in light emission restored both normal colonization capability and induction of swelling. We hypothesize that a diminished level of oxygen consumption by a luciferase-deficient symbiotic population is responsible for the reduced fitness of lux mutants in the light organ crypts. This study is the first to show that the capacity for bioluminescence is critical for normal cell-cell interactions between a bacterium and its animal host and presents the first examples of V. fischeri genes that affect normal host tissue development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号