首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening assays using target-based affinity selection coupled with high-sensitivity detection technologies to identify small-molecule hits from chemical libraries can provide a useful discovery approach that complements traditional assay systems. Affinity selection-mass spectrometry (AS-MS) is one such methodology that holds promise for providing selective and sensitive high-throughput screening platforms. Although AS-MS screening platforms have been used to discover small-molecule ligands of proteins from many target families, they have not yet been used routinely to screen integral membrane proteins. The authors present a proof-of-concept study using size exclusion chromatography coupled to AS-MS to perform a primary screen for small-molecule ligands of the purified muscarinic M2 acetylcholine receptor, a G-protein-coupled receptor. AS-MS is used to characterize the binding mechanisms of 2 newly discovered ligands. NGD-3350 is a novel M2-specific orthosteric antagonist of M2 function. NGD-3366 is an allosteric ligand with binding properties similar to the allosteric antagonist W-84, which decreases the dissociation rate of N-methyl-scopolamine from the M2 receptor. Binding properties of the ligands discerned from AS-MS assays agree with those from in vitro biochemical assays. The authors conclude that when used with appropriate small-molecule libraries, AS-MS may provide a useful high-throughput assay system for the discovery and characterization of all classes of integral membrane protein ligands, including allosteric modulators.  相似文献   

2.
Rabies virus glycoprotein and snake venom curaremimetic neurotoxins share a region of high homology (30-45 for neurotoxins and 190-203 for the glycoprotein) in the regions that are believed to be responsible for binding the nicotinic acetylcholine receptor. Monoclonal antibodies raised to the 190-203 synthetic fragment of rabies virus glycoprotein were immobilized on a high performance affinity chromatography column and were able to bind neurotoxins. Toxins were displaced from the affinity column by elution at acidic pH and by affinity competition with acetylcholine at neutral pH. Furthermore, the affinity column proved to be useful for the purification of cholinergic ligands. Overall, these results indicate that the paratope of our monoclonal antibodies could behave as an 'internal image' of the nicotinic cholinergic receptor acetylcholine binding site.  相似文献   

3.
1. The interaction of two specific ligands for the vertebrate nicotinic acetylcholine receptor were investigated on the solubilized form of a proposed acetylcholine receptor from the invertebrate Limulus polyphemus. 2. The affinity agent 4-(N-maleimodo)benzyltrimethylammonium iodide exhibited no effect on the binding of alpha-bungarotoxin to the Limulus receptor protein. 3. Torpedo acetylcholine receptor antibody neither inhibited alpha-bungarotoxin binding nor produced any alteration in the sedimentation profile of the Limulus receptor. 4. The lack of interaction of 4-(N-maleimido)benzyltrimethylammonium iodide and Torpedo acetylcholine receptor antibody with the Limulus acetylcholine receptor was interpreted to reflect significant difference between the molecular structures of this invertebrate receptor and the acetylcholine receptor of vertebrate.  相似文献   

4.
The nicotinic acetylcholine receptor, purified from Torpedo electric organ, was coupled to a light addressable potentiometric sensor (LAPS) to form a LAPS-receptor biosensor. Receptor-ligand complexes containing biotin and urease were captured on a biotinylated nitrocellulose membrane via a streptavidin bridge and detected with a silicon-based sensor. Competition between biotinylated alpha-bungarotoxin and nonbiotinylated ligands formed the basis of this assay. This biosensor detected both agonists (acetylcholine, carbamylcholine, succinylcholine, suberyldicholine, and nicotine) and competitive antagonists (d-tubocurarine, alpha-bungarotoxin, and alpha-Naja toxin) of the receptor with affinities comparable to those obtained using radioactive ligand binding assays. Consistent with agonist-induced desensitization of the receptor, the LAPS-receptor biosensor reported a time-dependent increase in affinity for the agonist carbamylcholine as expected, but not for the antagonists.  相似文献   

5.
Recent work has shown that the nicotinic acetylcholine receptor (nAChR) can be fixed in distinct conformations by chemical cross-linking with glutardialdehyde, which abolishes allosteric transitions in the protein. Here, two conformations that resemble the desensitized and the resting states were compared with respect to their affinities for different classes of ligands. The same ligands were tested for their ability to convert the nAChR from a conformation with low affinity to a conformation with high affinity for acetylcholine. As expected, agonists were found to bind with higher affinity to the desensitized state-like conformation and to induce a shift of the nAChR to this high affinity state. In contrast, although most antagonists tested bound preferentially to the desensitized receptor as well they failed to induce a change of the affinity for acetylcholine. These observations sharply contradict basic predictions of the concerted model, including the postulate of a preformed equilibrium between the different states of the nAChR in the absence of agonist. With a similar approach we could show that the non-competitive inhibitor ethidium is displaced in a non-allosteric manner by other well characterized channel blockers from the cross-linked nAChR. These results require revision of current models for the mechanisms underlying non-competitive antagonism at the nAChR.  相似文献   

6.
The nicotinic acetylcholine receptor from Torpedo was immobilised in tethered membranes. Surface plasmon resonance was used to quantify the binding of ligands and antibodies to the receptor. The orientation and structural integrity of the surface-reconstituted receptor was probed using monoclonal antibodies, demonstrating that approximately 65% of the receptors present their ligand-binding site towards the lumen of the flow cell and that at least 85% of these receptors are structurally intact. The conformation of the receptor in tethered membranes was investigated with Fourier transform infrared spectroscopy and found to be practically identical to that of receptors reconstituted in lipid vesicles. The affinity of small receptor ligands was determined in a competition assay against a monoclonal antibody directed against the ligand-binding site which yielded dissociation constants in agreement with radioligand binding assays. The presented method for the functional immobilisation of the nicotinic acetylcholine receptor in tethered membranes might be generally applicable to other membrane proteins.  相似文献   

7.
Conformational changes upon binding of carbamylcholine to acetylcholine receptor-enriched membrane fragments have been observed by stopped-flow methods using the fluorescent probe ethidium bromide. A model consistent with both equilibrium and kinetic experiments is proposed in which the receptor binds two molecules of carbamylcholine with high affinity in a non-cooperative manner followed by binding of a third and possibly a fourth molecule with increasingly lower affinity. The receptor ligand precomplexes isomerize to different non-interconvertible complexes depending on the number of ligands bound. This kinetic model fits the data for carbamylcholine interactions with receptor prepared initially either in a low or high affinity form for ligands.  相似文献   

8.
J Bode  T Moody  M Schimerlik  M Raftery 《Biochemistry》1979,18(10):1855-1861
A series of synthetic 1,n-bis(3-aminopyridinio)-alkane fluorescent probes have been used to determine the ligand binding properties of the acetylcholine receptor purified from Torpedo californica electroplax. At equilibrium, the probes bound to a single class of sites. The binding affinity of the fluorescent decamethonium analogues increased progressively as the number of methylene groups (n) increased from 4 to 12 and decreased in the range of 16--18 such groups. The receptor bound 1,12-bis(3-aminopyridinio)dodecane and 1,14-bis(3-aminopyridinio)tetradecane with the highest affinity while related monofunctional probes such as 1-(3-amino-pyridinio)propane were bound with a substantially lower affinity. The data indicate that the receptor interacts strongly with both ends of a bifunctional probe such as 1,14-bis(3-aminopyridinio)tetradecane. Also, competition between bifunctional fluorescent probe binding and the binding of conventional cholinergic ligands, was investigated and led to the conclusion that the probes, which are antagonists, form ternary complexes in the presence of acetylcholine.  相似文献   

9.
Various acetylcholine receptor-rich membrane preparations from Torpedo californica electroplax tissue were examined using the techniques of differential scanning calorimetry coupled with gel electrophoretic analysis of heat-denaturing material and functional assays following passage through discrete transitions. In unfractionated membranes, four irreversible calorimetric transitions were observed, one of which (Td = 59 degrees C) could be assigned to a complete loss of acetylcholine receptor function. A second lower temperature transition apparently corresponds to loss of certain peripheral membrane proteins including the Mr = 43,000 polypeptide and the acetylcholinesterase activity. Membrane preparations highly enriched in acetylcholine receptor polypeptides contained a major transition at 59 degrees C which could be shown to be sensitive to the presence of added ligands of the acetylcholine receptor, supporting its assignment to structural alterations of the receptor protein or its arrangement in the membrane.  相似文献   

10.
The RS and SR enantiomers of 2-oxazolidinone and 1,4-benzodioxane bearing a 2-pyrrolidinyl substituent at the 5- and 2-position, respectively, were synthesized as candidate nicotinoids. One of the two benzodioxane stereoisomers reasonably fits the pharmacophore elements of (S)-nicotine and binds at alpha4beta2 nicotinic acetylcholine receptor with submicromolar affinity. Interestingly, both the synthesized pyrrolidinylbenzodioxanes exhibit analogous affinity at alpha(2) adrenergic receptor resembling the behaviour of some known alpha(2)-AR ligands recently proved to possess neuronal nicotinic affinity.  相似文献   

11.
Abstract

We have covalently coupled acetylcholine receptor and other proteins to the inner surface of nylon tubes and employ these affinity tubes in binding assays and for chromatographic purposes. Here we describe two applications: (i) The concentration determination of toxins and antibodies directed against the acetylcholine receptor, and (ii) the isolation and chromatography of specific immunoglobulins.  相似文献   

12.
The acetylcholine receptor of Torpedo electroplax is purified by affinity adsorption using cobra toxin (Naja naja siamensis) covalently attached to Sepharose 4B. Desorption by 10 mm benzoquinonium produces a protein that binds α-[125I]bungarotoxin but not [3H]acetylcholine or other reversible cholinergic ligands. On the other hand, desorption by 1 m carbamylcholine produces an acetylcholine receptor protein that binds [3H]acetylcholine, [3H]decamethonium, [3H]nicotine, [14C]dimethyl-d-tubocurarine, and α-[125I]bungarotoxin. The batch method of affinity adsorption employed gives recoveries of acetylcholine receptor (as measured by acetylcholine binding) averaging 69.2 ± 14.6%. The purity of the isolated acetylcholine receptor protein is estimated to be at best 87% as judged by disc gel electrophoresis and electrofocusing.The purified acetylcholine receptor binds 7.8 nmoles acetylcholine/mg protein based on estimation of protein concentration by a spectrophotometric method. Of these, 2.7 nmoles exhibit high affinity (KD = 0.02 μM) and 5.1 nmoles a lower affinity (KD = 1.97 μM. If the protein concentration used is that obtained by amino acid analysis, the total specific activity would be 10.4 nmoles acetylcholine bound per milligram protein. The subunit carrying one acetylcholine binding site is estimated to range between 83,000 and 112,000 daltons. In contrast to the membrane-bound or Lubrol-solubilized acetylcholine receptor, the purified acetylcholine receptor shows no autoinhibition with acetylcholine concentrations up to 10 μm. Binding of acetylcholine was totally inhibited by α-bungarotoxin or cobra toxin and was partially blocked by four nicotinic drugs, but not by two muscarinic ones. The amino acids of the acetylcholine receptor are analyzed and compared to those of acetylcholinesterase.  相似文献   

13.
We investigated the binding characteristics of a (+)-enantiomer of radioiodinated 2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[125I]pIV], radioiodinated at the para-position of the 4-phenylpiperidine moiety, to sigma receptors (sigma-1, sigma-2) and to vesicular acetylcholine transporters (VAChT) in membranes of the rat brain and liver. In competitive inhibition studies, (+)-pIV (Ki=1.30 nM) had more than 10 times higher affinity to the sigma-1 (sigma-1) receptor than (+)-pentazocine (Ki=19.9 nM) or haloperidol (Ki=13.5 nM) known as sigma ligands. Also, the binding affinity of (+)-pIV for the sigma-1 receptor (Ki=1.30 nM), was about 16 times higher than the sigma-2 (sigma-2) receptor (Ki=20.4 nM). (+)-pIV (Ki=1260 nM) had a much lower affinity for VAChT than (-)-vesamicol (Ki=13.0 nM) or (-)-pIV (Ki=412 nM). (+)-[125I]pIV had low affinity for the dopamine, serotonin, adrenaline, and acetylcholine receptors. Furthermore, in a saturation binding study, (+)-[125I]pIV exhibited a K) of 6.96 nM with a Bmax of 799 fmol/mg of protein. These results showed that (+)-pIV binds to the sigma-1 receptor with greater affinity than sigma receptor ligands such as (+)-pentazocine or haloperidol, and that radioiodinated (+)-pIV is suitable as radiotracer for sigma-1 receptor studies in vitro.  相似文献   

14.
Potent and selective ligands of the alpha7 nicotinic acetylcholine receptor are required to understand the pharmacological effect of alpha7 activation. A common cross-reactivity occurs with serotonergic 5-HT3 receptors with which alpha7 receptors have a high sequence homology. We demonstrate that certain quinuclidine 3-biaryl carboxamides are high affinity alpha7 ligands with an excellent binding selectivity over 5-HT3 receptors.  相似文献   

15.
Binding of alpha-bungarotoxin, labeled with 125I, has been studied in detergent extracts and affinity purified acetylcholine receptor from rat cerebral cortex. Binding to detergent extracts is saturable and appears to be due to one class of binding sites present at a level of 0.27 pmol/mg of protein. The association constant is 2 X 10(7) liters mol-1 . Competition with cholinergic ligands indicates that toxin binding to both detergent solubilized and affinity purified receptor retains its nicotinic nature. Values for the ligand concentrations required to produce 50% inhibition of extent and rate of toxin binding are presented.  相似文献   

16.
Muscarinic toxin 7 (MT7) is a mamba venom protein antagonist with extremely high selectivity for the M1 muscarinic acetylcholine receptor. To map the sites for the interaction of MT7 with muscarinic receptors we have used chimeric M1:M3 receptors and site-directed mutagenesis of the M3 and M4 receptor subtypes. Two Glu residues in M1, one in extracellular loop 2 and one in extracellular loop 3, were found to be important for the high affinity binding of MT7. Substitution of the corresponding Lys residues in the M3 receptor with Glu converted the M3 mutant to an MT7 binding receptor, albeit with lower affinity compared with M1. A Phe --> Tyr substitution in extracellular loop 2 of M3 together with the 2 Glu mutations generated a receptor with an increased MT7 affinity (apparent Ki = 0.26 nM in a functional assay) compared with the M1 receptor (apparent Ki = 1.31 nM). The importance of the identified amino acid residues was confirmed with a mutated M4 receptor constructs. The results indicate that the high selectivity of MT7 for the M1 receptor depends on very few residues, thus providing good prospects for future design and synthesis of muscarinic receptor-selective ligands.  相似文献   

17.
Abstract

Electrophysiological studies from this and other laboratories have suggested a direct action of ATP on nicotinic acetylcholine receptors (nAChR). To determine the site of binding of this purine derivative, we have covalently modified the nAChR from Torpedo marmorata electrocytes employing 2-[3H]-8-azido-ATP as a photoactivable affinity label. Covalently attached radioactivity was predominantly found in the β-polypeptide of the receptor. Based on the results of protection studies with several nAChR ligands whose target sites at the receptor are known, we conclude that the purine site(s) differ from those of acetylcholine and of physostigmine, galanthamine and related ligands, and those of local anesthetics.  相似文献   

18.
Abstract: The nicotinic acetylcholine receptor (AChR) exhibits at least four different conformational states varying in affinity for agonists such as acetylcholine (ACh). Photoaffinity labeling has been previously used to elucidate the topography of the AChR. However, to date, the photosensitive probes used to explore the cholinergic binding site photolabeled only closed or desensitized states of the receptor. To identify the structural modifications occurring at the ACh binding site on allosteric transition associated with receptor activation, we have investigated novel photoactivatable 4-diazocyclohexa-2,5-dienone derivatives as putative cholinergic agonists. Such compounds are fairly stable in the dark and generate highly reactive carbenic species on irradiation. In binding experiments using AChRs from Torpedo marmorata, these ligands had affinities for the ACh binding site in the micromolar range and did not interact with the noncompetitive blocker site (greater than millimolar affinity). Irreversible photoinactivation of ACh binding sites was obtained with the ligand 1b (up to 42% at 500 µM) in a protectable manner. In patch-clamp studies, 1b was shown to be a functional agonist of peripheral AChR in TE 671 cells, with the interesting property of exhibiting no or very little desensitization even at high concentrations.  相似文献   

19.
The nicotinic acetylcholine receptor (nAChR) belongs to a group of five stracturally related proteins that regulate signal transmission between approximately 1012 cells of the mammalian nervous system. Many therapeutic agents and abused drugs inhibit the nAChR, including the anti-convulsant MK-801 and the abused drug cocaine. Many attempts have been made to find compounds that prevent inhibition by cocaine. Use of transient kinetic techniques to investigate the inhibition of the receptor by MK-801 and cocaine led to an inhibition mechanism not previously proposed. The mechanism led to the development of combinatorially synthesized RNA ligands that alleviate inhibition of the receptor. However, these ligands are relatively unstable. Here we determined whether much more stable 2-fluoro-modified RNA ligands can be prepared and used to study the alleviation of receptor inhibition. Two classes of 2-fluoro-modified RNA ligands were obtained: One class binds with higher affinity to the cocaine-binding site on the closed-channel form and, as predicted by the mechanism, inhibits the receptor. The second class binds with equal or higher affinity to the cocaine-binding site on the open-channel form and, as predicted by the mechanism, does not inhibit the receptor, and does alleviate cocaine and MK-801 inhibition of the nAChR. The stability of these 2-fluoro-RNAs expands the utility of these ligands.  相似文献   

20.
Analogs of Neuropeptide Y (NPY) were synthesized with conventional Boc/benzyl protective group strategy. Instead of Asn7 in the native sequence, Boc-Lys(Alloc)-OH was incorporated. At the end of the synthesis the Alloc group was selectively removed by palladium-catalyzed hydrostannolysis and biotin coupled to the epsilon-amino group of Lys7. After cleavage and characterization with plasma desorption mass spectrometry the N epsilon,7-biotinyl-[Lys7]-NPY and the nonbiotinylated analog [Lys7]-NPY were investigated as ligands to the NPY receptor from rat cerebral cortex. Both analogs were found to be high affinity ligands to the NPY receptor and bound with essentially the same affinity as unmodified NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号