首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Liesi 《Medical biology》1984,62(3):163-180
Laminin and fibronectin, the major noncollagenous matrix glycoproteins, were studied in connection with normal brain cells and neuroectodermal cell lines. Laminin, a Mr 900,000 dalton matrix glycoprotein and an essential component of basement membranes, was found to be produced by cultured cells of several malignant cell lines of neuroectodermal origin. In cultured mouse C1300 neuroblastoma line cells laminin was localized, by immunoelectron microscopy, to the rough endoplasmic reticulum and, to sites of cell-to-cell and cell-to-substratum adhesion. Further experiments on the intracellular transport of this glycoprotein in C1300 cells confirmed that laminin is, at least partially, transported through the Golgi pathway. These results favor a role for laminin in attachment and cellular interactions of malignant neuronal cells. Laminin was also found in connection with neurons and glial cells from mammalian brain. In primary cultures from developing rat brain the vast majority of non-neuronal cells (80%) expressed immunoreactivity for the glial fibrillary acidic protein, a cytoskeletal protein specific for astrocytes. During the first week in culture all the glial fibrillary acidic protein-positive cells, with the exception of mature-looking star-shaped astrocytes, exhibited immunoreactivity for laminin. The intracellular laminin disappeared gradually after a few weeks in culture, but an extensive laminin matrix persisted and seemed to be localized on the upper surface of the non-neuronal cells. The neurofilament-positive neurons were negative for laminin. Pretreatment of the cultures with the ionophore monensin, caused accumulation of laminin-immunoreactivity within the Golgi region, which confirmed that laminin is, indeed, produced by cultured astrocytes and secreted through the Golgi complex. No fibronectin immunoreactivity was found in the majority of glial cells. However, under culture conditions where fibronectin was omitted from the culture medium there was, in the primary cultures, a minor population of glial fibrillary acidic protein-positive flat glial cells that exhibited intracytoplasmic immunofluorescence for fibronectin. In the presence of fibronectin in culture medium no fibronectin-positive glial cells could be detected. It thus appears that laminin, and to a minor extent fibronectin, are proteins that normal glial cells are capable of producing under specific conditions. Laminin and fibronectin were localized in adult rat brain in capillary and meningeal structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Do neurons in the vertebrate CNS migrate on laminin?   总被引:11,自引:1,他引:10       下载免费PDF全文
P Liesi 《The EMBO journal》1985,4(5):1163-1170
In adult rat brain the extracellular matrix glycoprotein, laminin, is found only in basement membranes, but is transiently expressed by astrocytes after brain injury. Here, I show that laminin also appears in immature brain cells during CNS development, and that its presence coincides with phases of neuronal migration. In early embryos, laminin is seen throughout the whole thickness of the forming brain, and is apparently synthesized by the cells, as judged by its intracytoplasmic localization. As development proceeds, intracellular laminin becomes restricted to the periventricular regions while punctate deposits of laminin follow the course of vimentin-positive radial glial fibers. In most brain regions, the adult pattern of laminin expression is achieved by birth. In the post-natal rat cerebellum, however, laminin is detected in external granule cells, in Purkinje cells, and in punctate deposits along the radial Bergmann glial fibers. By day 24 after birth, when the migration of external granule cells is complete, all laminin immunoreactivity disappears from these structures. The transient expression of laminin in regions where neurons are migrating raises the possibility that laminin plays a role in neuronal migration during CNS development.  相似文献   

3.
After demonstration of the paracrine action of glial neurotrophic factors, gliosis has also been considered to be related to neuronal trophism and plasticity rather than solely a repair event following brain injury. S100 is a Ca2+ binding protein, present mainly in astrocytes, that exerts paracrine trophic effects on several neuronal populations. This study analyses the presence of S100 protein by means of immunohistochemistry combined with stereology in the reactive glial cells of the rat visual pathways following a lesion of the visual cortex. Adult male Wistar rats were submitted to a unilateral aspiration of the occipital cortex or to a sham operation. One week later the rats were killed and their brain processed for immunochemistry. Single antibody immunohistochemistry was performed for the visualization of glial fibrillary acidic protein (GFAP, a marker for astrocytes), OX-42 (a marker for microglia) and S100 protein. Double immunofluorescence procedures were applied for co-localization of the S100/GFAP and S100/OX-42. An optical dissector, point interceptors and rotators were used to quantify the degree of glial activation and the changes in the S100 immunoreactivity. We observed an intense microglial and astroglial reaction in addition to an increased S100 immunoreactivity in the occipital cerebral cortex, geniculate nucleus and hippocampus ipsilateral to the lesion. In the ipsilateral superior colliculus, an intense astroglial activation was accompanied by an up-regulation of S100 immunoreactivity. Double-immunofluoresence revealed an increased S100 immunoreactivity in reactive astrocytes, but not in the reactive microglia. Evidence has therefore been obtained that after mechanical trauma, the astroglial S100 protein participates in the trophism and plasticity of the injured visual pathways.  相似文献   

4.
Laminin is produced by early rat astrocytes in primary culture   总被引:22,自引:8,他引:14       下载免费PDF全文
The production of laminin by early rat astrocytes in primary culture was investigated by double immunofluorescence staining for laminin and the glial fibrillary acidic protein (GFAP), a defined astrocyte marker. In early cultures (3 d in vitro; 3 DIV) cytoplasmic laminin was detected in all the GFAP-positive cells which formed the major population (80%) of the nonneuronal cells present in cultures from 20- 21-d embryonic, newborn, or 5-d-old rat brains. Monensin treatment (10 microM, 4 h) resulted in accumulation of laminin in the Golgi region, located using labeled wheat germ agglutinin. Laminin started gradually to disappear from the cells with the time in culture, was absent in star-shaped, apparently mature astrocytes, but remained as pericellular matrix deposits. The disappearance of cellular laminin was dependent on the age of the animal and the time in culture so that it started earlier in cultures from 5-d-old rat brains (5 DIV) and approximately following the in vivo age difference in cultures from newborn (12 DIV) and embryonic (14 DIV) rat brains. Our results indicate that laminin is a protein of early astrocytes and also deposited by them in primary culture, thus suggesting a role for this glycoprotein in the development of the central nervous system.  相似文献   

5.
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP-/-vim-/-) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP-/-, vimentin-/-, or GFAP-/-vim-/- mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP-/- or vimentin-/- mice, but was impaired in GFAP-/-vim-/- mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.  相似文献   

6.
本文研究了脑穿刺损伤后伤灶组织中大胶质细胞的变化、性激素对脑损伤后星形胶质细胞反应的影响,以及反义胶质原纤维酸性蛋白(GFAP)逆转录病毒表达载体对Ast形态结构,反应性胶质化及胶质瘢痕形成的作用。结果表明,胶质瘢痕中增生的大胶质细胞主要是Ast,GFAP对维持Ast的形态结构及功能具有重要作用;少突胶质细胞在胶质瘢痕形成过程中不是反应活跃的细胞成分;性激素对Ast的反应性胶质化有一定程度的抑制作  相似文献   

7.
P Liesi 《The EMBO journal》1985,4(10):2505-2511
Most regions of the adult mammalian central nervous system (CNS) do not support axonal growth and regeneration. Laminin, expressed by cultured astrocytes and known to promote neurite outgrowth of cultured neurons, is normally present in brain basement membranes, and only transiently induced in adult brain astrocytes by injury. Here I provide three lines of evidence which suggest that the continued expression of laminin by astrocytes may be a prerequisite for axonal growth and regeneration in adult CNS. Firstly, laminin is continuously present in astrocytes of adult rat olfactory bulb apparently in close association with the olfactory nerve axons. Secondly, laminin is continuously expressed by astrocytes in adult frog brain, and sectioning of the optic tract further increases laminin immunoreactivity in astrocytes of the optic tectum during the period of axonal regeneration. Lastly, laminin appears normally in astrocytes of the frog and goldfish optic nerves which regenerate, but not in astrocytes of the rat or chick optic nerves which do not regenerate. The selective association of laminin with axons that undergo growth and regeneration in vivo is consistent with the possibility that astrocytic laminin provides these central nervous systems with their regenerative potential.  相似文献   

8.
The protein NDRG2 (N-myc downregulated gene 2) is expressed in astrocytes. We show here that NDRG2 is located in the cytosol of protoplasmic and fibrous astrocytes throughout the mammalian brain, including Bergmann glia as observed in mouse, rat, tree shrew, marmoset and human. NDRG2 immunoreactivity is detectable in the astrocytic cell bodies and excrescencies including fine distal processes. Glutamatergic and GABAergic nerve terminals are associated with NDRG2 immunopositive astrocytic processes. Müller glia in the retina displays no NDRG2 immunoreactivity. NDRG2 positive astrocytes are more abundant and more evenly distributed in the brain than GFAP (glial fibrillary acidic protein) immunoreactive cells. Some regions with very little GFAP such as the caudate nucleus show pronounced NDRG2 immunoreactivity. In white matter areas, NDRG2 is less strong than GFAP labeling. Most NDRG2 positive somata are immunoreactive for S100ß but not all S100ß cells express NDRG2. NDRG2 positive astrocytes do not express nestin and NG2 (chondroitin sulfate proteoglycan 4). The localization of NDRG2 overlaps only partially with that of aquaporin 4, the membrane-bound water channel that is concentrated in the astrocytic endfeet. Reactive astrocytes at a cortical lesion display very little NDRG2, which indicates that expression of the protein is reduced in reactive astrocytes. In conclusion, our data show that NDRG2 is a specific marker for a large population of mature, non-reactive brain astrocytes. Visualization of NDRG2 immunoreactive structures may serve as a reliable tool for quantitative studies on numbers of astrocytes in distinct brain regions and for high-resolution microscopy studies on distal astrocytic processes.  相似文献   

9.
Hozumi  I.  Inuzuka  T.  Tsuji  S. 《Neurochemical research》1998,23(3):319-328
Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.  相似文献   

10.
The presence of astrocytes in the cerebrospinal fluid (CSF) of patients may be of diagnostic importance. However, the frequency with which astrocytes are shed into normal and abnormal human CSF is unknown. This issue was studied using monoclonal antibodies to an astrocyte-specific antigen, glial fibrillary acidic protein (GFAP), and immunoperoxidase cytochemistry. The study was prospectively conducted on 108 CSF preparations diagnosed as normal, reactive, metastatic malignancy or suspicious for metastatic malignancy. To validate these methods, cells from a clonal human glioma cell line, which contains astrocytes rich in GFAP, were processed in a manner identical to that used for the CSFs obtained from patients. Studies of the human glioma cell line demonstrated intense GFAP immunoreactivity in the majority of the malignant astrocytes. In contrast, none of the CSFs contained GFAP-positive cells. We conclude that immunocytochemical methods can detect GFAP in neoplastic human astrocytes but that nonneoplastic GFAP-positive cells are uncommon in human CSF; such cells were not seen in our large series of normal and abnormal human CSFs. The immunocytochemical detection of GFAP may be a useful criterion for distinguishing malignant astrocytes from other types of malignant cells in human CSF.  相似文献   

11.
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.  相似文献   

12.
Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehyde-fixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

13.
Summary Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehydefixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

14.
蝎毒对癫痫敏感性和海马GFAP释放的影响   总被引:8,自引:2,他引:8  
目的和方法 :本工作用海人酸癫痫模型 ,通过对癫痫大鼠蝎毒治疗后行为变化及脑内胶质原纤维酸性蛋白(GFAP)免疫反应活性的检测 ,对蝎毒抗癫痫反复发作的相关脑区及其机制做以初步探讨。结果 :癫痫大鼠蝎毒治疗三周后 ,能明显减少癫痫发作的例数 ,减轻癫痫发作的程度 ,使发作的潜伏期延长 (P <0 .0 5 )。免疫细胞化学的实验显示 ,蝎毒抗癫痫反复发作的相关脑区是海马。 8例蝎毒治疗的大鼠与实验对照组相比 ,有 6例背侧海马GFAP免疫染色明显减轻 ,未见星形胶质细胞增生 ;CA1区无明显神经元缺失 ;而且与空白对照组相比无显著差异。结论 :癫痫大鼠蝎毒治疗三周后 ,能明显减轻癫痫发作的行为 ,抑制海马星形胶质细胞的增生肥大 ,减轻海马神经元受损的程度。蝎毒抑制海马星形胶质细胞增生很可能是蝎毒抗癫痫反复发作的重要机制之一。  相似文献   

15.
Impact spinal cord injury (20 g-cm) was induced in rat by weight drop. The immunoreactivity of mcalpain was examined in the lesion and adjacent areas of the cord following trauma. Increased calpain immunoreactivity was evident in the lesion compared to control and the immunostaining intensity progressively increased after injury. The calpain immunoreactivity was also increased in tissue adjacent to the lesion. mCalpain immunoreactivity was significantly stronger in glial and endothelial cells, motor neurons and nerve fibers in the lesion. The calpain immunoreactivity also increased in astrocytes and microglial cells in the adjacent areas. Proliferation of microglia and astrocytes identified by GSA histochemical staining and GFAP immunostaining, respectively, was seen at one and three days after injury. Many motor neurons in the ventral horn showed increased calpain immunoreactivity and were shrunken in the lesion. These studies indicate a pivotal role for calpain and the involvement of glial cells in the tissue destruction in spinal cord injury. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

16.
Astrogliosis is a process that involves morphological and biochemical changes associated with astrocyte activation in response to cell damage in the brain. The upregulation of intermediate filament proteins including glial fibrillary acidic protein (GFAP), nestin and vimentin are often used as indicators for astrogliosis. Although connexin43 (Cx43), a channel protein widely expressed in adult astrocytes, exhibits enhanced immunoreactivity in the peri-lesion region, its role in astrogliosis is still unclear. Here, we correlated the temporal and spatial expression of Cx43 to the activation of astrocytes and microglia in response to an acute needle stab wound in vivo. We found large numbers of microglia devoid of Cx43 in the needle wound at 3 days post injury (dpi) while reactive astrocytes expressing Cx43 were present in the peripheral zone surrounding the injury site. A redistribution of Cx43 to the needle site, corresponding to the increased presence of GFAP-positive reactive astrocytes in the region, was only apparent from 6 dpi and sustained until at least 15 dpi. Interestingly, the extent of microglial activation and subsequent astrogliosis in the brain of Cx43 knockout mice was significantly larger than those of wild type, suggesting that Cx43 expression limits the degree of microgliosis. Although Cx43 is not essential for astrogliosis and microglial activation induced by a needle injury, our results demonstrate that Cx43 is a useful marker for injury induced astrogliosis due to its enhanced expression specifically within a small region of the lesion for an extended period. As a channel protein, Cx43 is a potential in vivo diagnostic tool of asymptomatic brain injury.  相似文献   

17.
Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP(+) astrocytes (21% of FABP7(+) cells) and NG2(+) oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7(+)/NG2(+) cells, while there was a significant increase in FABP7(+)/GFAP(+) cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU(+) astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis.  相似文献   

18.
The subfornical organ (SFO) is a circumventricular organ with a chemosensitive function, and its vessels have no blood-brain barrier. Our study investigated the glial and vascular components in the SFO to determine whether their distributions indicate subdivisions, how to characterize the vessels and how to demarcate the SFO. To this end, we investigated glial markers (GFAP, glutamine synthetase, S100) and other markers, including vimentin and nestin (immature glia), laminin (basal lamina), β-dystroglycan (glio-vascular connections), and aquaporin 4 (glial water channels). We determined that the ‘shell’ of the SFO was marked by immunoreactivity for S100, GFAP and aquaporin 4. Nestin immunoreactivity was characteristic of the ‘core’. Vimentin was almost evenly distributed. Glutamine synthetase immunoreactivity occurred in the shell but its expression was sparse. Vessels in the core were decorated with laminin but showed a discontinuous expression of aquaporin 4. Vimentin and GFAP staining was usually in separate glial elements, which may be related to their functional differences. Similar to other vessels in the brain, β-dystroglycan was detected along the shell vessels but laminin was not. The gradual disappearance of the laminin immunopositivity was attributed to the gradual disappearance of the perivascular space. Thus, our findings suggest that the shell and core glio-vascular structures are adapted to different sensory functions: osmoperception and the perception of circulating peptides, respectively.  相似文献   

19.
Although mRNA expression of group IIA secretory phospholipase A2 (sPLA2-IIA) has been implicated in responses to injury in the CNS, information on protein expression remains unclear. In this study, we investigated temporal and spatial expression of sPLA2-IIA mRNA and immunoreactivity in transient focal cerebral ischemia induced in rats by occlusion of the middle cerebral artery. Northern blot analysis showed a biphasic increase in sPLA2-IIA mRNA expression following 60-min of ischemia-reperfusion: an early phase at 30 min and a second increase at a late phase ranging from 12 h to 14 days. In situ hybridization localized the early-phase increase in sPLA2-IIA mRNA to the affected ischemic cortex and the late-phase increase to the penumbral area. Besides sPLA2-IIA mRNA, glial fibrillary acidic protein (GFAP) and cyclo-oxygenase-2 mRNAs, but not cytosolic PLA2, also showed an increase in the penumbral area at 3 days after ischemia-reperfusion. Immunohistochemistry of sPLA2-IIA indicated positive cells in the penumbral area similar to the GFAP-positive astrocytes but different from the isolectin B4-positive microglial cells. Confocal microscopy further confirmed immunoreactivity of sPLA2-IIA in reactive astrocytes but not in microglial cells. Taken together, these results demonstrate for the first time an up-regulation of the inflammatory sPLA2-IIA in reactive astrocytes in response to cerebral ischemia-reperfusion.  相似文献   

20.
Characterization of cells with proliferative activity after a brain injury   总被引:5,自引:0,他引:5  
The cellular responses to a brain injury are important steps in restoring the integrity and function of the brain. Proliferating cells, such as reactive astrocytes, oligodendrocyte precursor cells and microglia remodel the injured tissue. To spatially and temporally characterize the initial cellular responses in vivo, proliferating cells were pulse-labeled with BrdU soon after (the 2nd day) a cortical cryo-injury, and their fate was investigated by double labeling with an anti-BrdU antibody and antibodies to various cellular markers. Three days after the cryo-injury, a significant proportion of BrdU-positive cells were positive for NG2-proteoglycan, suggesting that oligodendrocyte progenitors (OPCs) were induced in response to injury. One-two weeks after the cryo-injury, the number of OPC was reduced and GFAP/BrdU double-positive cells, in turn, became dominant, while cells with mature oligodendrocyte markers did not increase significantly. Neuronal markers were rarely co-localized with BrdU immunoreactivity throughout the period studied. These findings imply that OPCs are prone to differentiate to astrocytes in the lesioned site. In this cryo-injury model, treatment with thyroid hormone (T4) altered cell fate; the increase in the number of GFAP/BrdU-positive cells was significantly diminished, and there was an increased number of mature oligodendrocytes (CNPase, PLP-positive) exhibiting BrdU immunoreactivity. These findings suggest that modification of proliferating progenitors in injured brain by hormonal or chemical treatment might benefit functional regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号