首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plagemann, Peter G. W. (Western Reserve University, Cleveland, Ohio), and H. Earle Swim. Replication of mengovirus. I. Effect on synthesis of macromolecules by host cell. J. Bacteriol. 91:2317-2326. 1966.-The replication of mengovirus was studied in two strains of Novikoff (rat) hepatoma cells propagated in vitro. The replicative cycle in both strains required 6.5 to 7 hr. Infection resulted in a marked depression of ribonucleic acid (RNA) and protein synthesis by strain N1S1-63. Inhibition of RNA synthesis was reflected by a decrease in the deoxyribonucleic acid (DNA)-dependent RNA polymerase activity of isolated nuclei. Mengovirus had no effect on either protein or RNA synthesis or on the DNA-dependent RNA polymerase activity of a second strain, N1S1-67. The time course of viral-induced synthesis of RNA by cells was studied in cells treated with actinomycin D. It was first detectable between 2.5 and 3 hr after infection and continued until 6.5 to 7 hr. The formation of mature virus was estimated biochemically by measuring the amount of RNA synthesized as a result of viral infection which was resistant to degradation by ribonuclease in the presence of deoxycholate. Approximately 70% of the deoxycholate-ribonuclease-resistant RNA was located in mature virus, and the remainder was double-stranded. The formation of mature virus began about 45 min after viral-directed (actinomycin-resistant) synthesis of RNA was detectable in the cell, and only about 18 to 20% of the total RNA synthesized was incorporated into virus. Release of virus from cells began about 1 hr after maturation was first detectable. Release of virus from cells was accompanied by a loss of a large proportion of their cytoplasmic RNA and protein.  相似文献   

2.
3.
Infection of Novikoff rat hepatoma cells (subline NlSL-67) with mengovirus resulted in a two- to threefold increase in the rate of choline incorporation into membrane phosphatidylcholine at about 3 hr after infection, without affecting the rate of transport of choline into the cell or its phosphorylation. The time course of virus-stimulated phosphatidylcholine synthesis was compared with the time courses of other virus-induced processes during a single cycle of replication. The formation of viral ribonucleic acid (RNA) polymerase and of viral RNA commenced about 1 hr earlier than the virus-stimulated choline incorporation. Further, isopycnic centrifugation of cytoplasmic extracts indicated that the excess of phosphatidylcholine synthesized by infected cells is not located in the membrane structures associated with the viral RNA replication complex, but with structures of a lower density (1.08 to 1.14 g/cc). These membrane structures probably represent the smooth vesicles which accumulate in the cytoplasm of infected cells during the period of increased phosphatidylcholine synthesis between 3 and 5 hr after infection. They are formed with both newly synthesized phosphatidylcholine and phosphatidylcholine present prior to infection. However, concomitant protein synthesis is not required for the stimulated synthesis of membranes; the effect was not inhibited by treating the cells with inhibitors of protein synthesis at 3 hr after infection, although virus production was inhibited about 90% and virus-induced cell degeneration was markedly reduced and delayed. Production of mature virus began normally at about the same time as the stimulation of phosphatidylcholine synthesis. Treatment of infected cells with puromycin at 2 hr, on the other hand, completely inhibited the stimulation of phosphatidylcholine synthesis.  相似文献   

4.
Host-Dependent Restriction of Mengovirus Replication   总被引:5,自引:2,他引:3       下载免费PDF全文
Mengovirus infection of a restrictive cell line, Maden's bovine kidney (MDBK), results in a virus yield 1,000-fold less than that obtained from productively infected cell lines such as L cells or Ehrlich ascites tumor cells (EAT). Cells of both types of host systems are infected with comparable efficiencies and are completely killed as a consequence of infection. Infective center assays, coupled with the observation of total cell killing, suggest that comparable numbers of cells synthesize viral antigen and release virus in both types of host system. Viral-specific ribonucleic acid (RNA) synthesis is initiated and proceeds in an identical fashion for approximately 4 hr after the infection of MDBK, EAT, or L-cells. At this time, viral RNA synthesis in MDBK ceases, whereas viral RNA synthesis in EAT and L-cells continues at a linear rate. These results indicate that none of the early viral events leading to the initiation of viral-specific RNA synthesis constitutes the primary site of mengovirus restriction in MDBK. Rather it appears that the cessation of viral RNA synthesis in restrictive cells constitutes the primary limiting event. Based on its delayed interaction with mengovirus RNA synthesis, it appears that the host-related restrictive agent is initially compartmentalized and then released as a consequence of infection subsequent to those early events in mengovirus infection leading to the initiation and continued synthesis of viral RNA.  相似文献   

5.
We have prepared homologous, fractionated, cell-free translational systems from uninfected and mengovirus-infected Ehrlich ascites tumor cells in order to determine what alterations occur following virus infection in the translational machinery of the host cell. Two major differences distinguish the system developed from infected cells. First, it has a 40% lower rate of protein synthesis, primarily a consequence of the rate of chain elongation, which is depressed to 60 amino acids/min from 90 amino acids/min in the system from uninfected cells. Second, at supraoptimal concentrations of Mg2+ and K+ the system from virus-infected cells supports the translation of mengovirus RNA but not host mRNA. These differences between the two systems may reflect specific changes which are responsible for the selective translation of mengovirus RNA in the infected cell. In both systems the optimal concentrations of polyamines, monovalent and divalent cations, mRNA, and ribosomal subunits are the same for the translation of either host or viral RNA. This uniformity is useful in experiments, designed to investigate the selective translation of viral RNA, where various components of the two systems are interchanged.  相似文献   

6.
Iglewski, W. J. (The Pennsylvania State University, University Park), and E. H. Ludwig. Respiration of mengovirus-infected L-929 cells. J. Bacteriol. 92:733-738. 1966.-Polarographic techniques were employed to study the oxidative metabolism of L-929 cells during a one-step mengovirus growth cycle. Virus maturation began 3.5 hr after infection and was complete with 7 hr. Virus maturation was accompanied by a decreased rate of endogenous respiration and an increased rate of oxidation of succinate and alpha-glycerophosphate by L-929 cells. The rate of glucose uptake was the same for mengovirus-infected and control L-929 cells. However, there was a decreased oxidation of glucose to carbon dioxide and a decreased production of lactic acid by L cells infected with mengovirus under aerobic conditions. Mengovirus was produced equally well under aerobic and anaerobic conditions. The implications of the alterations in metabolism with respect to virus synthesis are discussed.  相似文献   

7.
Kilham rat virus (KRV) is adsorbed into the rat nephroma cell within 1 hr after infection. There follows a latent period of about 12 hr during which less than 1% of the input infectious virus can be accounted for. New infectious virions can be detected at about 12 hr and the maximal yield of virus is attained by 23 hr after infection. The increase in final virus yield is about 200-fold over that found in the latent period. During this 23-hr period of virus growth, the rate of protein synthesis remains 75 to 100% of that in the uninfected cell. Ribonucleic acid (RNA) synthesis during this period is maintained at 100 to 150% of that found in the control cells. The addition of the inhibitor of deoxyribonucleic acid (DNA) synthesis, 5-fluoro-deoxyuridine (FUDR), up to 8 hr after infection completely suppresses virus production. After 8 hr, viral DNA production has started and FUDR inhibition progressively decreases until by 23 hr the addition of the inhibitor no longer causes a reduced virus yield. Viral DNA synthesis once initiated is required for the remainder of the 23-hr virus cycle. Viral DNA synthesis probably begins about 4 hr before the production of infectious virions. In the KRV-infected cells, DNA synthesis decreased sharply for 6 to 7 hr after infection in comparison to the uninfected cell. At 7 to 8 hr after infection, DNA synthesis in the infected cell increased and was maintained at a higher level than in the control cells for the rest of the virus growth period.  相似文献   

8.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

9.
Phospholipid Synthesis in Sindbis Virus-Infected Cells   总被引:5,自引:5,他引:0       下载免费PDF全文
We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of (32)PO(4) into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of (14)C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited (14)C-choline incorporation in uninfected cells. In contrast, incorporation of (14)C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection.  相似文献   

10.
The incorporation of uridine into the nucleotide pool of actinomycin-treated, mengovirus-infected Novikoff rat hepatoma cells in culture follows simple Michaelis-Menten kinetics, and the apparent V(max) and K(m) values are similar to those for uridine transport by uninfected cells. Incorporation of uridine into mengovirus-specific ribonucleic acid (RNA) also follows Michaelis-Menten kinetics, and the apparent K(m) (about 10 mum) is approximately the same as for uridine transport. Inhibition of uridine transport by the presence of adenosine, persantin, or phenethyl alcohol inhibits simultaneously and to the same extent the incorporation of uridine into the nucleotide pool and into viral RNA, without affecting viral RNA synthesis per se. Phenethyl alcohol, however, also inhibits virus maturation. The inhibition of uridine incorporation into the nucleotide pool and into viral RNA is of the simple competitive type, indicating that transport into the cells is the rate-limiting step in the incorporation of uridine into mengovirus RNA. The results also indicate that treatment with actinomycin D or mengovirus infection does not affect uridine transport.  相似文献   

11.
The selective translation of viral RNA in mengovirus-infected Ehrlich ascites tumor cells was investigated using fractionated translational systems whose macromolecular components were derived entirely from uninfected or virus-infected cells. Both systems translate host mRNA from uninfected cells, host mRNA from virus-infected cells, and mengovirus RNA. In competition experiments, where viral RNA and host mRNA were translated together in systems from uninfected cells, the relative amounts of virus-specific and host-specific proteins synthesized were proportional to the relative concentrations of the RNA templates. In systems whose components were obtained from virus-infected cells, mengovirus RNA was preferentially translated. 70% of the selectivity found in the translational systems derived from infected cells was due to the initiation factor fraction, the remaining 30% to components of the pH 5 enzyme fraction. In addition, host mRNA isolated after virus infection is translated in vitro to a lower extent in the presence of mengovirus RNA than is host mRNA from uninfected cells.  相似文献   

12.
Cultures of L cells were synchronized with respect to deoxyribonucleic acid (DNA) synthesis with thymidine and 5-fluoro-2'-deoxyuridine (FUdR) and infected with Newcastle disease virus (NDV), mengovirus, or reovirus 3. Inhibition of incorporation of (3)H-cytidine into the DNA of synchronized cells is partially inhibited 2 hr after infection with NDV or mengovirus and nearly completely suppressed 4 hr after infection. With NDV and mengovirus, no evidence was obtained of differences in sensitivity of cells during early S phase as compared to later stages in DNA synthesis. When cells were infected with reovirus at the time of release from FUdR block, inhibition of cellular DNA synthesis was evident at 2 to 3 hr, and it was complete at 4 to 5 hr after infection. However, when cells were infected several hours prerelease, synthesis of DNA occurred in early S phase in spite of the fact that the cells had been infected for up to 6 hr. The results indicate that DNA synthesis in early S phase is relatively insensitive to the inhibitory function of reovirus. Colorimetric determinations (diphenylamine reaction) of the amounts of DNA produced in synchronized cells have substantiated the inhibition of DNA synthesis observed by isotope incorporation techniques.  相似文献   

13.
Maximum amounts of 42S and 26S single-stranded viral RNA and viral structural proteins were synthesized in Aedes albopictus cells at 24 h after Sindbis virus infection. Thereafter, viral RNA and protein syntheses were inhibited. By 3 days postinfection, only small quantities of 42S RNA and no detectable 26S RNA or structural proteins were synthesized in infected cells. Superinfection of A. albopictus cells 3 days after Sindbis virus infection with Sindbis, Semliki Forest, Una, or Chikungunya alphavirus did not lead to the synthesis of intracellular 26S viral RNA. In contrast, infection with snowshoe hare virus, a bunyavirus, induced the synthesis of snowshoe hare virus RNA in both A. Ablpictus cells 3 days after Sindbis virus infection and previously uninfected mosquito cells. These results suggested that at 3 days after infection with Sindbis virus, mosquito cells restricted the replication of both homologous and heterologous alphaviruses but remained susceptible to infection with a bunyavirus. In superinfection experiments the the alphaviruses were differentiated on the basis of plaque morphology and the electrophoretic mobility of their intracellular 26S viral RNA species. Thus, it was shown that within 1 h after infection with eigher Sindbis or Chikungunya virus, A. albopictus cells were resistant to superinfection with Sindbis, Chikungunya, Una, and Semliki Forest viruses. Infected cultures were resistant to superinfection with the homologous virus indefinitely, but maximum resistance to superinfection with heterologous alphaviruses lasted for approximately 8 days. After that time, infected cultures supported the replication of heterologous alphaviruses to the same extent as did persistently infected cultures established months previously. However, the titer of heterologous alphavirus produced after superinfection of persistently infected cultures was 10- to 50-fold less than that produced by an equal number of previously uninfected A. albopictus cells. Only a small proportion (8 to 10%) of the cells in a persistently infected culture was capable of supporting the replication of a heterologous alphavirus.  相似文献   

14.
Synthesis and Cleavage of Influenza Virus Proteins   总被引:5,自引:2,他引:3       下载免费PDF全文
The NWS strain of influenza virus grows rapidly in and kills the MDCK dog kidney cell strain. Within 1 to 2 hr, the virus inhibits host cell protein synthesis and for 3 to 4 hr more it directs the synthesis of influenza virus proteins at a rate about twice that of uninfected cell synthesis. The rates of virus ribonucleic acid (RNA) and protein synthesis reach a maximum within the first few hours after infection and then drop. Plaque assays exhibit a linear dose-response, indicating that only one virion is necessary for productive infection. We have confirmed earlier reports regarding the fragmented nature of the RNA genome of purified influenza virions. However, high resolution gel electrophoresis indicated that each size class of viral RNA is heterogenous, so that there are at least 10 and probably more fragment sizes of RNA in these virions. Repeated attempts to detect infectivity in preparations of extracted viral RNA were completely negative (over a 10(8)-fold loss of infectivity after extraction). Even infection of the "infectious" RNA-treated cells with intact, related, influenza viruses failed to support infectivity of the isolated RNA or to rescue a host range genetic marker of the RNA. Purified influenza virions exhibit only three major protein peaks based on separation according to molecular weights. These three major virion proteins are the only major virion proteins synthesized in infected cells. This is true throughout the infectious cycle from several hours after infection until the cells are dying. However, the molecular weight of these virion proteins differs slightly depending upon the cell type in which the virus is grown. No host membrane proteins are incorporated into the virions as they bud through the cell membrane. Pulse-chase labeling early after infection or prolonged chase experiments indicate that influenza virus proteins are cleaved from one or more precursor polypeptides. In fact, each of the three major peaks seems to be a heterogeneous mixture of polypeptides in various stages of cleavage. Peptide analysis confirms that the three major peaks share common peptides, but the exact precursor product relationships are not clear. There may be one or several precursor proteins. Also there could be overlapping messenger RNA molecules of varying length giving rise to polypeptides of various sizes and overlapping sequences. Late in infection, amino acid labeling shows a preponderance of internal nucleocapsid protein synthesis, indicating that either this protein is much more stable to cleavage in infection or it is made from a more stable messenger. There is no obvious relationship between virion RNA fragments and viral protein sizes, so these fragments may be artifacts.  相似文献   

15.
16.
The synthesis of viral ribonucleic acid (RNA) was detected within 2 hr after infection with LSc poliovirus at 35 C. This RNA eluted as a single peak with 0.9 m NaCl on methylated albumin celite columns, was sensitive to ribonuclease, precipitated in the presence of 2 m LiCl, and had an S(20) value at 34 +/- 2 in linear sucrose gradients. When cells were infected at 39 to 40 C, there was also early synthesis of RNA. However, 2 hr after infection this synthesis was drastically inhibited. The absence of net RNA synthesis at 39 to 40 C during the late stages of infection was not caused by rapid degradation of newly formed RNA, since the RNA produced between 1 and 2 hr at 39 to 40 C was still present 3.5 hr after infection. There was a 3 log(10) inhibition in the production of infectious virus when p-fluorophenylalanine was present in the medium at a concentration of 25 mug/ml. This concentration of analogue had little effect upon the production of viral polymerase and viral RNA. Virus grown in the presence of analogue at a concentration of 10 mug/ml exhibited increased heat sensitivity compared to control virus. However, viral polymerase exhibited no change in sensitivity to heat or manganese when cells were exposed to 25 mug of p-fluorophenylalanine per ml during infection. p-Fluorophenylalanine had a relatively selective effect on viral capsid protein but did not reverse the inhibition of synthesis of viral RNA at 39 to 40 C.  相似文献   

17.
We describe the selective irreversible inhibition of mengovirus growth in cultured cells by a combination of two pyrrolopyrimidine nucleoside analogues, 5-bromotubercidin (BrTu) and tubercidin (Tu). At a concentration of 5 microgram/ml, BrTu reversibly blocked the synthesis of cellular mRNA and rRNA but did not inhibit either mengovirus RNA synthesis or multiplication. BrTu is a potent inhibitor of adenosine kinase, and low concentrations of BrTu (e.g., 0.5 microgram/ml), which did not by themselves inhibit cell growth, blocked phosphorylation of Tu and thus protected uninfected cells against irreversible cytotoxicity resulting from Tu incorporation into nucleic acids. In contrast, in mengovirus-infected cells, BrTu did not completely inhibit Tu incorporation into mengovirus RNA, allowing the formation of Tu-containing functionally defective polynucleotides that aborted the virus development cycle. This increased incorporation of Tu coupled to mengovirus infection could be attributed either to a reduction in the inhibitory action of BrTu and/or its nucleotide derivatives at the level of nucleoside and nucleotide kinases and/or, perhaps, to an effect upon the nucleoside transport system. The virus life cycle in nucleoside-treated cells progressed to the point of synthesis of negative strands and probably to the production of a few defective new positive strands. Irreversible virus growth arrest was achieved if the nucleoside mixture of BrTu (0.5 to 10 microgram/ml) and Tu (1 to 20 microgram/ml) was added no later than 30 min after virus infection and maintained for periods of 2 to 8 h. The cultures thus "cured" of mengovirus infection could be maintained and transferred for several weeks, during which they neither produced detectable virus nor showed a visible cytopathic effect; however, the infected and cured cells themselves, while metabolically viable, were permanently impaired in RNA synthesis and unable to divide. Although completely resistant to superinfecting picornaviruses, they retained the ability to support the growth of several other viruses (vaccinia virus, reovirus, and vesicular stomatitis virus), showing that cured cells had, in general, retained the metabolic and structural machinery needed for virus production. The resistance of cured cells to superinfection with picornaviruses seemed attributable neither to interferon action nor to destruction or blockade of virus receptors but more likely to the consumption of some host factor(s) involved in the expression of early viral functions during the original infection.  相似文献   

18.
The mechanism whereby picornaviruses inhibit host protein synthesis while their own synthetic processes proceed unabated has remained elusive. One of our approaches to this problem was to study the ability of cell-free extracts derived from uninfected and mengovirus-infected Ehrlich ascites tumor cells to translate viral and nonviral mRNA's under various conditions of incubation. Our results indicate that viral messengers (from mengovirus and encephalomyocarditis virus) and cellular messengers [L cell and Ehrlich ascites tumor poly(A)-containing mRNA's, rabbit globin mRNA, and chicken embryo lens crystallin mRNA] are translated equally well in both extracts. We also examined the simultaneous translation of viral and nonviral mRNA's in extracts from uninfected Ehrlich ascites tumor cells. Our results indicate that under certain conditions mengovirus RNA can suppress completely the translation of globin mRNA. The significance of these results in terms of the shutoff of host protein synthesis is discussed.  相似文献   

19.
The production of mengovirus in Novikoff rat hepatoma cells is progressively reduced with an increase in incubation temperature of the cells from 34 to 40 C, in spite of the fact that about the same amounts of single-stranded and double-stranded viral ribonucleic acid (RNA) are synthesized at 34, 37, and 40 C; the rate of overall protein synthesis is as high at 40 C as at 37 C. At 40 C, progeny viral RNA accumulates in an undegraded form without being incorporated into virus particles. The results suggest that virus maturation is preferentially inhibited at supraoptimal temperatures. At 42 C, on the other hand, no viral RNA is produced and no viral RNA polymerase activity is detectable in cell lysates. Failure of infected cells to form viral RNA polymerase at 42 C is probably due to an impairment of protein synthesis since most of the polyribosomes are rapidly lost during incubation at 42 C and the rate of amino acid incorporation into protein is 70% lower at 42 C than at 37 C. When infected cells are shifted from 37 to 42 C during the period of active viral RNA synthesis, viral RNA polymerase activity is rapidly lost from the cells, and viral RNA synthesis ceases within 45 min. In contrast, the RNA polymerase is as active in vitro at 42 C as at 37 C, and the activity is relatively stable at 42 C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号