首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of Mutagenesis by Chloroacetaldehyde   总被引:4,自引:1,他引:3       下载免费PDF全文
A number of bifunctional chemical mutagens induce exocyclic DNA lesions. For example, 2-chloroacetaldehyde (CAA), a metabolite of vinyl chloride, readily reacts with single-stranded DNA to predominantly form etheno lesions. Here, we report on in vivo mutagenesis caused by CAA treatment of DNA in vitro. These experiments used partially duplex phage M13AB28 replicative form DNA in which a part of the lacZ gene sequence was held in single-stranded form to direct reaction with CAA. CAA-treated partial duplex DNA was transfected into Escherichia coli, and the induced base changes were defined by DNA sequencing. These experiments suggested that CAA treatment induced mutations at cytosines, much less efficiently at adenines, but not at guanines or thymines. Among mutations targeted to cytosine, 80% were C-to-T transitions and 20% were C-to-A transversions. Application of a post-labeling method detected dose-dependent formation of ethenoadenine and ethenocytosine in CAA treated DNA. These data indicate that ethenocytosine is a highly efficient mutagen with properties suggestive of a non-instructional DNA lesion in vivo. Paradoxically, ethenoadenines are efficiently bypassed by a mechanism which appears to be largely nonmutagenic.  相似文献   

2.
Mutagenesis of bacteriophage T7 and T7 DNA by alkylation damage.   总被引:1,自引:1,他引:1       下载免费PDF全文
We have developed a new assay for in vitro mutagenesis of bacteriophage T7 DNA that measures the generation of mutations in the specific T7 gene that codes for the phage ligase. This assay was used to examine mutagenesis caused by in vitro DNA synthesis in the presence of O6-methylguanosine triphosphate. Reversion of one of the newly generated ligase mutants by ethyl methanesulfonate was also tested.  相似文献   

3.
Mutagenesis at a specific position in a DNA sequence   总被引:25,自引:0,他引:25  
Predefined changes in a known DNA sequence were introduced by a general method. Oligodeoxyribonucleotides complementary to positions 582 to 593 of the viral DNA strand of the bacteriophage phiX174 am3 mutant (pGTATCCTACAAA), and to the wild type sequence in this region (pGTATCCTACAAA), were synthesized and used as specific mutagens. Each of these oligonucleotides was incorporated into a complete circular complementary strand when used as primer on a genetically heterologous viral strand template, by the combined action of subtilisin-treated Escherichia coli DNA polymerase I and T4 DNA ligase. Incomplete duplexes were removed or were inactivated by nuclease S1 and the products were used to transfect spheroplasts of E. coli. Both oligonucleotides induced specific mutations at high efficiency when used with heterologous template (15% mutants among progeny phage). The am phages isolated by this procedure are phenotypically gene E mutants, and contain A at position 587 of the viral strand. They thus appear identical with am3 and provide evidence that the change G leads to A at position 587 is sufficient to produce a defective E function. Since the template for the induction of am mutants carried another genetic marker (sB1), the strains carrying the induced mutations have the new genotype am3 sB1. It should be possible to introduce the am3 mutation into any known mutant strain of phi174 using this same oligonucleotide. Both possible transition mutations were induced in these experiments. In principle, the method could also induce transversions, insertions, and deletions. The method should be applicable to other circular DNAs of similar size, for example recombinant DNA plasmids.  相似文献   

4.
Nucleotide incorporation and extension opposite N2-ethyl-Gua by DNA polymerase iota was measured and structures of the DNA polymerase iota-N2-ethyl-Gua complex with incoming nucleotides were solved. Efficiency and fidelity of DNA polymerase iota opposite N2-ethyl-Gua was determined by steady state kinetic analysis with Mg2+ or Mn2+ as the activating metal. DNA polymerase iota incorporates dCMP opposite N2-ethyl-Gua and unadducted Gua with similar efficiencies in the presence of Mg2+ and with greater efficiencies in the presence of Mn2+. However, the fidelity of nucleotide incorporation by DNA polymerase iota opposite N2-ethyl-Gua and Gua using Mn2+ is lower relative to that using Mg2+ indicating a metal-dependent effect. DNA polymerase iota extends from the N2-ethyl-Gua:Cyt 3' terminus more efficiently than from the Gua:Cyt base pair. Together these kinetic data indicate that the DNA polymerase iota catalyzed reaction is well suited for N(2)-ethyl-Gua bypass. The structure of DNA polymerase iota with N2-ethyl-Gua at the active site reveals the adducted base in the syn configuration when the correct incoming nucleotide is present. Positioning of the ethyl adduct into the major groove removes potential steric overlap between the adducted template base and the incoming dCTP. Comparing structures of DNA polymerase iota complexed with N2-ethyl-Gua and Gua at the active site suggests movements in the DNA polymerase iota polymerase-associated domain to accommodate the adduct providing direct evidence that DNA polymerase iota efficiently replicates past a minor groove DNA adduct by positioning the adducted base in the syn configuration.  相似文献   

5.
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 5′-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 3′-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase β and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.  相似文献   

6.
Mechanism of DNA strand breakage by piperidine at sites of N7-alkylguanines   总被引:10,自引:0,他引:10  
The volatile, secondary amine piperidine is used in the Maxam-Gilbert chemical method of DNA sequencing to create strand breaks in DNA at sites of damaged bases. As such it is often used in generalized studies of DNA damage to identify 'alkali-labile lesions'. We confirm the mechanism proposed by Maxam and Gilbert (Maxam, A. and Gilbert, W. (1980) Methods Enzymol. 65, 499-560) by which aqueous piperidine creates strand breaks at sites of N7-guanine alkylations: alkaline conditions catalyze rupture of the C8-N9 bond, forming a formamido-pyrimidine structure which is displaced from the ribose moiety by piperidine. In keeping with this mechanism, the tertiary amine, N-methylpiperidine, does not catalyze the formation of strand breaks in alkylated DNA. Our data confirm the prediction that high pH in and of itself will not create strand breaks at sites of N7-alkylguanines.  相似文献   

7.
S. R. Sahasrabudhe  X. Luo    M. Z. Humayun 《Genetics》1991,129(4):981-989
As the most nucleophilic site in DNA, the guanine N7 atom is a major site of adduction by a large number of alkylating mutagens and carcinogens. Aflatoxin B1, a powerful mutagen, is believed to act through its reaction with this DNA site. On the basis of the specificity of base substitutions induced by various adduct forms of aflatoxin, we have proposed that bulky guanine N7 adducts elicit base substitutions by two mechanisms. The first mechanism is similar to that observed for a number of bulky noninstructive lesions, whereas the second mechanism invokes mispairing between N7-adducted guanine and thymine. A prediction of the mispairing hypothesis is that diverse bulky guanine N7 adducts (regardless of structural similarities with the aflatoxins) should induce predominantly G-to-A transitions. Accordingly, we have recently observed that base substitutions induced by the acridine half-mustard ICR-191 in the M13 double-stranded DNA transfection system are predominantly G:C-to-A:T transitions. Here, by transfecting ICR-191-treated M13 AB28 single-stranded DNA into Escherichia coli, we show that base substitutions are predominantly targeted to guanines. Since the N7-adducted-guanine:thymine mispairing is proposed to require N1 deprotonation promoted by the primary N7 lesion, guanine imidazole ring-opening should abolish this mispairing property, and thereby alter the specificity of mutagenesis. Here, we show that the incubation of ICR-191-treated RF DNA at pH 10.5 results in a significant reversal of the specificity of G:C-targeted substitutions such that G-to-T transversions predominated over G-to-A transitions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
《Molecular cell》2023,83(14):2434-2448.e7
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

10.
Abstract

A chiral acyclic nucleoside, one in which the ribose carbohydrate has been replaced with a glycerol-based linker, is prepared by glycosylating guanine at the N7-nitrogen. The stereochemically pure derivative is converted to a DMT-protected phosphoramidite for incorporation into DNA sequences. Sequence containing the acyclic N7-dG nucleoside are capable of forming DNA triplexes in which it is likely that the N1-H and N2-amino groups of the N7-dG are involved in recognition of the guanine base in G-C base pairs.  相似文献   

11.
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.  相似文献   

12.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

13.
Human paraoxonase 1 (h-PON1) is a serum enzyme that can hydrolyze a variety of substrates. The enzyme exhibits anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial and organophosphate-hydrolyzing activities. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against a variety conditions in human. However, the crystal structure of h-PON1 is not solved and the molecular details of how the enzyme hydrolyzes different substrates are not clear yet. Understanding the catalytic mechanism(s) of h-PON1 is important in developing the enzyme for therapeutic use. Literature suggests that R/Q polymorphism at position 192 in h-PON1 dramatically modulates the substrate specificity of the enzyme. In order to understand the role of the amino acid residue at position 192 of h-PON1 in its various hydrolytic activities, site-specific mutagenesis at position 192 was done in this study. The mutant enzymes were produced using Escherichia coli expression system and their hydrolytic activities were compared against a panel of substrates. Molecular dynamics simulation studies were employed on selected recombinant h-PON1 (rh-PON1) mutants to understand the effect of amino acid substitutions at position 192 on the structural features of the active site of the enzyme. Our results suggest that, depending on the type of substrate, presence of a particular amino acid residue at position 192 differentially alters the micro-environment of the active site of the enzyme resulting in the engagement of different subsets of amino acid residues in the binding and the processing of substrates. The result advances our understanding of the catalytic mechanism of h-PON1.  相似文献   

14.
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties.  相似文献   

15.
16.
Abstract

An oligodeoxynucleotide designed to bind to a single stranded guanine rich DNA sequence through Watson-Crick followed by Hoogsteen hydrogen bonds was found to destabilize quadruplex structure formed by the target sequence. However, the conventional antisense and antigene oligonucleotides were unable to destabilize the same quadruplex structure.  相似文献   

17.
18.
The complexex DNA-Ag1+, DNA-Cu1+, protonated DNA and DNA methylated at N7 of guanine were oriented by pumping the solutions through a multicapillary cell in the direction of a light beam. The CD components along the DNA axis, delta epsilon parallel, and normal to it, 2 delta epsilon perpendicular, were calculated from the CD spectra of the oriented samples by the method of Chung and Holzwarth, (1975) J. Mol. Biol. 92, 449--466. It was shown that in most cases, except that of the protonated DNA, the degree of orientation was only slightly less than that for pure DNA. This demonstrated the absence of aggregation and of appreciable denaturation. In all cases the modifications of DNA give rise to a negative component 2 delta epsilon perpendicular, whose magnitude increased as the extent of modification increased. From both the CD spectra of non-oriented samples and the absorption spectra, an inference is drawn that Ag1+ and Cu1+ are attached to the same site as CH3 groups i.e., to the N7 atom of guanine. Proton transfer along the H-bond from the N1 atom of G to the N3 atom of the complementary cytosine is suggested to be a result of the modifications, although the case of H+-DNA may differ from the others. Based on the CD spectra for the anisotropic components, delta epsilon parallel and 2 delta epsilon perpendicular, it is proposed that ligand binding is accompanied by winding of the DNA helix.  相似文献   

19.
A halotolerant, collagenolytic strain of Vibrio sp. was conjugated with an Escherichia coli strain carrying plasmid RP4. The plasmid was transferred to and maintained in the Vibrio and could be subsequently transferred in matings to suitably marked stains of the same species. After conjugation with an E. coli carrying the cointegrate plasmid RP4::Mu cts61::Tn7, Vibrio transconjugants were selected that carried Tn7 inserted into the bacterial chromosome. A large proportion of these transconjugants were auxotrophic, showing that plasmid suicide by Mu can be used to isolate Tn7-derived mutants in Vibrio. Approximately half of the auxotrophs isolate Tn7-derived mutants in Vibrio. Approximately half of the auxotrophs isolated were ilv mutants, all of which exhibited the same phenotype. Thus, although Tn7 insertion can induce auxotrophy, including trp, thy, his and ura, in Vibrio, there does appear to be a hot spot for integration in the ilv operon.  相似文献   

20.
K W Kohn  J A Hartley    W B Mattes 《Nucleic acids research》1987,15(24):10531-10549
Quantitative determinations were carried out of the relative reaction rates of several nitrogen mustards at various guanine-N7 positions in DNA fragments of known sequence. The findings suggest structural hypotheses of the origins of the reaction selectivities. End-labeled DNA fragments were reacted with nitrogen mustards, and the guanine-N7 alkylation sites were analyzed by gel electrophoresis. Relative reaction intensities were determined by computer analysis of digitized densitometer scans. The differences in reaction intensities at different G's were in part attributable to the effects of nearest neighbor base pairs on the molecular electrostatic potential near the reaction site. Uracil and quinacrine mustards have specific sequence preferences for reaction that differ from other mustards. The nature of the specific sequence preferences were determined and hypotheses are proposed to explain their origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号