首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given that the bioactive lipid sphingosine 1-phosphate is involved in cardiovascular pathophysiology, and since lipid accumulation and inflammation are hallmarks of calcific aortic stenosis, the role of sphingosine 1-phosphate on the pro-inflammatory/pro-osteogenic pathways in human interstitial cells from aortic and pulmonary valves was investigated. Real-time PCR showed sphingosine 1-phosphate receptor expression in aortic valve interstitial cells. Exposure of cells to sphingosine 1-phosphate induced pro-inflammatory responses characterized by interleukin-6, interleukin-8, and cyclooxygenase-2 up-regulations, as observed by ELISA and Western blot. Strikingly, cell treatment with sphingosine 1-phosphate plus lipopolysaccharide resulted in the synergistic induction of cyclooxygenase-2, and intercellular adhesion molecule 1, as well as the secretion of prostaglandin E2, the soluble form of the intercellular adhesion molecule 1, and the pro-angiogenic factor vascular endothelial growth factor-A. Remarkably, the synergistic effect was significantly higher in aortic valve interstitial cells from stenotic than control valves, and was drastically lower in cells from pulmonary valves, which rarely undergo stenosis. siRNA and pharmacological analysis revealed the involvement of sphingosine 1-phosphate receptors 1/3 and Toll-like receptor-4, and downstream signaling through p38/MAPK, protein kinase C, and NF-κB. As regards pro-osteogenic pathways, sphingosine 1-phosphate induced calcium deposition and the expression of the calcification markers bone morphogenetic protein-2 and alkaline phosphatase, and enhanced the effect of lipopolysaccharide, an effect that was partially blocked by inhibition of sphingosine 1-phosphate receptors 3/2 signaling. In conclusion, the interplay between sphingosine 1-phosphate receptors and Toll-like receptor 4 signaling leads to a cooperative up-regulation of inflammatory, angiogenic, and osteogenic pathways in aortic valve interstitial cells that seems relevant to the pathogenesis of aortic stenosis and may allow the inception of new therapeutic approaches.  相似文献   

2.
PURPOSE OF REVIEW: Degenerative aortic valve stenosis is a common disease in the elderly, and traditional risk factors for atherosclerotic disease including hyperlipidaemia have been associated with the condition in several studies. This review addresses the role of the various risk factors and the potential for intervention. RECENT FINDINGS: The association of lipid abnormalities such as high lipoprotein(a) levels and the presence of the apolipoprotein E4 allele with aortic stenosis, as well as the presence of several inflammatory markers both in plasma and in surgically excised valves, suggest that the stenotic process is driven by many of the same factors behind atherosclerosis. The aortic valves of animals fed a cholesterol-rich diet exhibit many characteristics in common with the early stages of aortic stenosis. This opens up the potential of retarding the process through intervention strategies. SUMMARY: Hyperlipidaemia is associated with degenerative aortic valve stenosis, and the disease resembles the inflammatory process of atherosclerosis. Randomized controlled clinical trials will be needed to demonstrate the role of lipid intervention in patients with this condition.  相似文献   

3.
Unlike its application for atherosclerotic plaque analysis, Raman microspectroscopy was sporadically used to check the sole nature of bioapatite deposits in stenotic aortic valves, neglecting the involvement of accumulated lipids/lipoproteins in the calcific process. Here, Raman microspectroscopy was employed for examination of stenotic aortic valve leaflets to add information on nature and distribution of accumulated lipids and their correlation with mineralization in the light of its potential precocious diagnostic use. Cryosections from surgically explanted stenotic aortic valves (n=4) were studied matching Raman maps against specific histological patterns. Raman maps revealed the presence of phospholipids/triglycerides and cholesterol, which showed spatial overlapping with one another and Raman-identified hydroxyapatite. Moreover, the Raman patterns correlated with those displayed by both von-Kossa-calcium- and Nile-blue-stained serial cryosections. Raman analysis also provided the first identification of carotenoids, which co-localized with the identified lipid moieties. Additional fit concerned the distribution of collagen and elastin. The good correlation of Raman maps with high-affinity staining patterns proved that Raman microspectroscopy is a reliable tool in evaluating calcification degree, alteration/displacement of extracellular matrix components, and accumulation rate of different lipid forms in calcified heart valves. In addition, the novel identification of carotenoids supports the concept that valve stenosis is an atherosclerosis-like valve lesion, consistently with their previous Raman microspectroscopical identification inside atherosclerotic plaques.Key words: Valve calcification, stenosis, carotenoids, lipids, Raman microspectroscopy  相似文献   

4.
Here, we demonstrate the angiogenic response of valvular endothelial cells to aortic valve (AV) stenosis using a new ex vivo model of aortic leaflets. Histological analysis revealed neovascularization within the cusps of stenotic but not of non-stenotic aortic valves. Correspondingly, the number of capillary-like outgrowth in 3D collagen gel was significantly higher in stenotic than in non-stenotic valves. Capillary-like sprouting was developed significantly faster in stenotic than in non-stenotic valves. New capillary sprouts from stenotic aortic valves exhibited the endothelial cell markers CD31, CD34 and von-Willebrand factor (vWF) as well as carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1), Tie-2 and angiogenesis inhibitor endostatin. Western blot analyses revealed a significant increase of CEACAM1 and endostatin in stenotic aortic valve tissue. Electron microscopic examinations demonstrate that these capillary-like tubes are formed by endothelial cells containing Weibel-Palade bodies. Remarkably, inter-endothelial junctions are established and basement membrane material is partially deposited on the basal side of the endothelial tubes. Our data demonstrate the capillary-like sprout formation from aortic valves and suggest a role of angiogenesis in the pathogenesis of aortic valve stenosis. These data provide new insights into the mechanisms of valvular disorders and open new perspectives for prevention and early treatment of calcified aortic stenosis.  相似文献   

5.
6.
Calcific aortic valve stenosis is the most common indication for surgical valve replacement. Inflammation appears to be one of the mechanisms involved in aortic valve calcification, and valve interstitial cells seem to contribute to that process. Although Toll-like receptors (TLRs) play an important role in the cellular inflammatory response, it is unknown whether human aortic valve interstitial cells (HAVICs) express functional TLRs. We examined the expression of TLR2 and TLR4 in human aortic valve leaflets and in isolated HAVICs and analyzed the response of cultured HAVICs to the TLR2 and TLR4 agonists peptidoglycan (PGN) and LPS. Abundant TLR2 and TLR4 proteins were found in human aortic valve leaflets and in isolated HAVICs, and both receptors were detected in the membrane and cytoplasm of cultured HAVICs. Stimulation by either PGN or LPS resulted in the activation of the NF-kappaB signaling pathway and the production of multiple proinflammatory mediators, including IL-6, IL-8, and ICAM-1. In addition, stimulation by either PGN or LPS upregulated the expression of bone morphogenetic protein-2 (BMP-2) and Runx2, factors associated with osteogenesis. This study demonstrates for the first time that HAVICs express TLR2 and TLR4 and that stimulation of HAVICs by PGN or LPS induces the expression of proinflammatory mediators and the upregulation of osteogenesis-associated factors. These results suggest that TLR2 and TLR4 may play a role in aortic valve inflammation and stenosis.  相似文献   

7.
Both aortic and mitral valves calcify in pathological conditions; however, the prevalence of aortic valve calcification is high whereas mitral valve leaflet calcification is somewhat rare. Patterns of valvular calcification may differ due to valvular architecture, but little is known to that effect. In this study, we investigated the intrinsic osteogenic differentiation potential of aortic versus mitral valve interstitial cells provided minimal differentiation conditions. For the assessment of calcification at the cellular level, we used classic inducers of osteogenesis in stem cells: β-glycerophosphate (β-Gly), dexamethasone (Dex), and ascorbate (Asc). In addition to proteomic analyses, osteogenic markers and calcium precipitates were evaluated across treatments of aortic and mitral valve cells. The combination of β-Gly, Asc, and Dex induced aortic valve interstitial cells to synthesize extracellular matrix, overexpress osteoblastic markers, and deposit calcium. However, no strong evidence showed the calcification of mitral valve interstitial cells. Mitral cells mainly responded to Asc and Dex by cell activation. These findings provide a deeper understanding of the physiological properties of aortic and mitral valves and tendencies for calcific changes within each valve type, contributing to the development of future therapeutics for heart valve diseases.  相似文献   

8.
The pathogenesis of aortic valve stenosis (AS) is characterized by the accumulation of LDL-derived cholesterol in the diseased valves. Since LDL particles also contain plant sterols, we investigated whether plant sterols accumulate in aortic valve lesions. Serum samples were collected from 82 patients with severe AS and from 12 control subjects. Aortic valves were obtained from a subpopulation of 21 AS patients undergoing valve surgery and from 10 controls. Serum and valvular total cholesterol and noncholesterol sterols were measured by gas-liquid chromatography. Noncholesterol sterols, including both cholesterol precursors and sterols reflecting cholesterol absorption, were detected in serum samples and aortic valves. The higher the ratios to cholesterol of the cholesterol precursors and absorption markers in serum, the higher their ratios in the stenotic aortic valves (r=0.74, P<0.001 for lathosterol and r=0.88, P<0.001 for campesterol). The valvular ratio to cholesterol of lathosterol correlated negatively with the aortic valve area (r= -0.47, P=0.045), suggesting attenuation of cholesterol synthesis with increasing severity of AS. The higher the absorption of cholesterol, the higher the plant sterol contents in stenotic aortic valves. These findings suggest that local accumulation of plant sterols and cholesterol precursors may participate in the pathobiology of aortic valve disease.  相似文献   

9.
Aortic valve calcification is a significant and serious clinical problem for which there are no effective medical treatments. Individuals born with bicuspid aortic valves, 1–2% of the population, are at the highest risk of developing aortic valve calcification. Aortic valve calcification involves increased expression of calcification and inflammatory genes. Bicuspid aortic valve leaflets experience increased biomechanical strain as compared to normal tricuspid aortic valves. The molecular pathogenesis involved in the calcification of BAVs are not well understood, especially the molecular response to mechanical stretch. HOTAIR is a long non-coding RNA (lncRNA) that has been implicated with cancer but has not been studied in cardiac disease. We have found that HOTAIR levels are decreased in BAVs and in human aortic interstitial cells (AVICs) exposed to cyclic stretch. Reducing HOTAIR levels via siRNA in AVICs results in increased expression of calcification genes. Our data suggest that β-CATENIN is a stretch responsive signaling pathway that represses HOTAIR. This is the first report demonstrating that HOTAIR is mechanoresponsive and repressed by WNT β-CATENIN signaling. These findings provide novel evidence that HOTAIR is involved in aortic valve calcification.  相似文献   

10.
The probable risk factors leading to aortic valve calcification are not clearly defined. The cross-sectional study of 85 patients with vascular and valvular calcification was performed. Correlations between the immune tests and aortic stenosis severity were investigated. The predictors of aortic valve calcification were probably C-reactive protein and interleukin-6. The predictors of aortic stenosis progression were interleukin-8, antibodies of Chlamydia pneumoniae and cytomegalovirus, and dysregulation of complement's components. Implication of immune reactivity could influence aortic valve calcification.  相似文献   

11.
In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis.  相似文献   

12.
Calcific aortic stenosis (CAS) is a pathological condition of the aortic valve characterized by dystrophic calcification of the valve leaflets. Despite the high prevalence and mortality associated with CAS, little is known about its pathogenetic mechanisms. Characterized by progressive dystrophic calcification of the valve leaflets, the early stages of aortic valve degeneration are similar to the active inflammatory process of atherosclerosis including endothelial disruption, inflammatory cell infiltration, lipid deposition, neo-vascularization and calcification. In the vascular system, the endothelium is an important regulator of physiological and pathological conditions; however, the contribution of endothelial dysfunction to valvular degeneration at the cellular and molecular level has received little attention. Endothelial cell (EC) activation and neo-vascularization of the cusps characterizes all stages of aortic valvular degeneration from aortic sclerosis to aortic stenosis. Here we reported the role of osteopontin (OPN) in the regulation of EC activation in vitro and in excised tissue from CAS patients and controls. OPN is an important pro-angiogenic factor in several pathologies. High levels of OPN have been demonstrated in both tissue and plasma of patients with aortic valve sclerosis and stenosis. The characterization of valvular ECs as a cellular target for OPN will help us uncover the pathogenesis of aortic valve degeneration and stenosis, opening new perspectives for the prevention and therapy of this prevalent disease.  相似文献   

13.
The avascularity of cardiac valves is abrogated in several valvular heart diseases (VHDs). This study investigated the molecular mechanisms underlying valvular avascularity and its correlation with VHD. Chondromodulin-I, an antiangiogenic factor isolated from cartilage, is abundantly expressed in cardiac valves. Gene targeting of chondromodulin-I resulted in enhanced Vegf-A expression, angiogenesis, lipid deposition and calcification in the cardiac valves of aged mice. Echocardiography showed aortic valve thickening, calcification and turbulent flow, indicative of early changes in aortic stenosis. Conditioned medium obtained from cultured valvular interstitial cells strongly inhibited tube formation and mobilization of endothelial cells and induced their apoptosis; these effects were partially inhibited by chondromodulin-I small interfering RNA. In human VHD, including cases associated with infective endocarditis, rheumatic heart disease and atherosclerosis, VEGF-A expression, neovascularization and calcification were observed in areas of chondromodulin-I downregulation. These findings provide evidence that chondromodulin-I has a pivotal role in maintaining valvular normal function by preventing angiogenesis that may lead to VHD.  相似文献   

14.
Renal failure is associated with aortic valve calcification. Using our rat model of uremia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in that disease. We also explored the effects of raloxifene, an estrogen receptor modulator, on valvular calcification. Gene array analysis was performed in aortic valves obtained from three groups of rats (n = 7 rats/group): calcified valves obtained from rats fed with uremic diet, valves after calcification resolution following diet cessation, and control. In addition, four groups of rats (n = 10 rats/group) were used to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet that also received daily raloxifene. Evaluation included imaging, histology, and antigen expression analysis. Gene array results showed that the majority of the altered expressed genes were in diet group valves. Most apoptosis-related genes were changed in a proapoptotic direction in calcified valves. Apoptosis and decreases in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of survival pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. In conclusion, downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure.  相似文献   

15.
Inhibitory role of Notch1 in calcific aortic valve disease   总被引:1,自引:0,他引:1  
  相似文献   

16.
The prevalence of aortic valve stenosis (AS) is increasing in the aging society. More recently, novel treatments and devices for AS, especially transcatheter aortic valve replacement (TAVR) have significantly changed the therapeutic approach to this disease. Research and development related to TAVR require testing these devices in the calcified heart valves that closely mimic a native calcific valve. However, no animal model of AS has yet been available. Alternatively, animals with normal aortic valve that are currently used for TAVR experiments do not closely replicate the aortic valve pathology required for proper testing of these devices. To solve this limitation, for the first time, we developed a novel polymeric valve whose leaflets possess calcium hydroxyapatite inclusions immersed in them. This study reports the characteristics and feasibility of these valves. Two types of the polymeric valve, i.e., moderate and severe calcified AS models were developed and tested by deploying a transcatheter valve in those and measuring the related hemodynamics. The valves were tested in a heart flow simulator, and were studied using echocardiography. Our results showed high echogenicity of the polymeric valve, that was correlated to the severity of the calcification. Aortic valve area of the polymeric valves was measured, and the severity of stenosis was defined according to the clinical guidelines. Accordingly, we showed that these novel polymeric valves closely mimic AS, and can be a desired cost-saving solution for testing the performance of the transcatheter aortic valve systems in vitro.  相似文献   

17.
Turbulent flow simulations are run for five aortic trileaflet valve geometries, ranging from a valve leaflet orifice area of 1.1 cm2 (Model A1—very stenotic) to 5.0 cm2 (Model A5—natural valve). The simulated data compares well with experimental measurements made downstream of various aortic trileaflet valves by Woo (PhD Thesis, 1984). The location and approximate width and length of recirculation regions are correctly predicted. The less stenotic valve models reattach at the end of the aortic sinus region, 1.1 diameters downstream of the valve. The central jet exiting the less stenotic valve models is not significantly different from fully developed flow, and therefore recovers very quickly downstream of the reattachment point. The more stenotic valves disturb the flow to a greater degree, generating recirculation regions large enough to escape the sinuses and reattach further downstream. Peak turbulent shear stress values downstream of the aortic valve models which approximated prosthetic valves are 125 and 300 N m−2, very near experimental observations of 150 to 350 N m−2. The predicted Reynolds stress profiles also present the correct shape, a double peak profile, with the location of the peak occuring at the location of maximum velocity gradient, which occurs near the recirculation region. The pressure drop across model A2 (leaflet orifice area 1.6 cm2) is 20 mmHg at 1.6 diameters downstream. This compares well with values ranging from 19.5 to 26.2 mmHg for valves of similar orifice areas. The pressure drop decreases with decreasing valve stenosis, to a negligible value across the least stenotic valve model. Based on the good agreement between experimental measurements of velocity, shear stress and pressure drop, compared to the simulated data, the model has the potential to be a valuable tool in the analysis of heart valve designs.  相似文献   

18.
Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs. Here we show that tissue-specific deletion of the gene encoding Activin Receptor Type I (Alk2 or Acvr1) in the cushion mesenchyme results in formation of aortic valve defects including BAV. These defects are largely due to a failure of normal development of the embryonic aortic valve leaflet precursor cushions in the outflow tract resulting in either a fused right- and non-coronary leaflet, or the presence of only a very small, rudimentary non-coronary leaflet. The surviving adult mutant mice display aortic stenosis with high frequency and occasional aortic valve insufficiency. The thickened aortic valve leaflets in such animals do not show changes in Bmp signaling activity, while Map kinase pathways are activated. Although dysfunction correlated with some pro-osteogenic differences in gene expression, neither calcification nor inflammation were detected in aortic valves of Alk2 mutants with stenosis. We conclude that signaling via Alk2 is required for appropriate aortic valve development in utero, and that defects in this process lead to indirect secondary complications later in life.  相似文献   

19.
Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression.  相似文献   

20.
Calcific aortic valve disease (CAVD) is the most common indication for valve surgery in the USA. This study hypothesizes that CAVD develops secondary to Wnt3a/Lrp5 activation via oxidative‐mechanical stress in eNOS null mice. eNOS?/? mice were tested with experimental diets including a control (n = 20), cholesterol (n = 20), cholesterol + Atorvastatin (n = 20). After 23 weeks the mice were tested for the development of aortic stenosis by Echo, Histology, MicroCT, and RTPCR for bone markers. In vitro studies measured Wnt3a secretion from aortic valve endothelial cells and confirmed oxidative stress via eNOS activity. Anion exchange chromatography was performed to isolate the mitogenic protein. Myofibroblast cells were tested to induce bone formation. Cholesterol treated eNOS mice develop severe stenosis with an increase in Wnt3a, Lrp5, Runx2 (threefold increase (P < 0.0001) in the bicuspid versus tricuspid aortic valves. Secretion of Wnt3a from aortic valve endothelium in the presence of abnormal oxidative stress was correlated with diminished eNOS enzymatic activity and tissue nitrite levels. Initial characterization of the architecture for a stem cell nice was determined by protein isolation using anion‐exchange chromatography and cell proliferation via thymidine incorporation. Osteoblastogenesis in the myofibroblast cell occurred via Lrp5 receptor upregulation in the presence of osteogenic media. Targeting the Wnt3a/Lrp5 pathway in valve calcification and activation of osteogenesis is via an oxidative‐mechanical stress in CAVD. These findings provide a foundation for treating this disease process by targeting the cross talk mechanism in a resident stem cell niche. J. Cell. Biochem. 113: 1623–1634, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号