首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The hawkmoth, Manduca sexta, uses both colour and odour to find flowers when foraging for nectar. In the present study we investigated how vision and olfaction interact during learning. Manduca sexta were equally attracted to a scented blue coloured feeding target (multimodal stimulus) as to one that does not carry any scent (unimodal stimulus; visual) or to an invisible scented target (unimodal stimulus; odour). This naive attraction to multimodal as well as to unimodal stimuli could be manipulated through training. Moths trained to feed from a blue, scented multimodal feeding target will, when tested in a set-up containing all three feeding targets, select the multimodal target as well as the scented, unimodal target, but ignore the visual target. Interestingly, moths trained to feed from a blue, unimodal visual feeding target will select the visual target as well as the scented, multimodal target, but ignore the unimodal odour target. Our results indicate that a multimodal target is perceived as two separate modalities, colour and odour, rather than as a unique fused target. These findings differ from earlier studies of desert ants that perceive combined visual and odour signals as a unique fused stimulus following learning trials.  相似文献   

3.
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10−5 cd m−2, implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.  相似文献   

4.
Most species of the neotropical genusSiphocampylus are believed to be bird-pollinated. The pollination biology ofSiphocampylus sulfureus was studied in a montane region in SE Brazil. This species has features intermediate between ornithophilous and chiropterophilous syndromes: it presents a striking combination of yellowish flowers with strong odour (chiropterophilous features), and diurnal anthesis and sucrose-dominated nectar (ornithophilous features). Major pollinators were hummingbirds by day, and a phyllostomid bat by night.Siphocampylus sulfureus may be viewed as a recent derivate from the presumed ornithophilous stock within sect.Macrosiphon, and thus benefits from the activity of both diurnal and nocturnal vertebrate pollinators.Dedicated to DrIlse Silberbauer-Gottsberger and Prof. DrGerhard Gottsberger for their pioneer contribution to floral biology in Brazil.  相似文献   

5.
Summary Stimulus intensity-response relations (V-log I curves) were electrophysiologically (ERG) determined for the compound eyes of 46 lepidopteran species belonging to five different groups: butterflies (22 species), hesperids (3 species), diurnal sphingids (2 species), diurnal moths (3 species) and nocturnal moths (16 species). The V-log I curves were fitted to the Naka and Rushton equation, in whichn represents the slope of the linear part of each curve. The slopes so determined range fromn=0.35 (the shallowest slope) in nocturnal moths with the greatest dynamic range ton=0.54 (the steepest slope) in diurnal moths andn=0.53 in butterflies both of which have narrow dynamic range. Hesperids (n=0.41) and diurnal sphingids (n=0.38) have intermediate values between butterflies and nocturnal moths.The ratio of rhabdom to retinula volume is significantly higher in nocturnal moths (70–75%), however, those of butterflies and of diurnal moths are very small (2–5%), and hesperids and diurnal sphingids show intermediate ratio (ca. 25%).The slopes of V-log I curves are inversely proportional to the ratio of rhabdom to retinula volume in the various eye types. In all groups except diurnal moths, the light intensities which produce maximal and saturated responses are nearly the same, therefore the nocturnal moths which have the lowest threshold to light increase their sensitivity to dim light mainly by decreasing the slopes of V-log I curves.  相似文献   

6.
Primate color vision has traditionally been examined in the context of diurnal activity, but recent genetic and ecological studies suggest that color vision plays a role in nocturnal primate behavior and ecology as well. In this study, we united molecular analyses of cone visual pigment (opsin) genes with visual modeling analyses of food items to explore the evolution of color vision in the folivorous woolly lemur (genus Avahi). Previous studies have shown that leaf quality, e.g., protein content, leaf toughness, and protein/toughness ratio, is significantly correlated with green-red and blue-yellow chromatic differences, suggesting a potential role of color in leaf discrimination in Avahi, and, consequently, a potential adaptive advantage to color vision in this taxon. Phylogenetic selection tests determined that the strength of selection on the SWS1 opsin gene to retain blue-sensitive SWS cones did not significantly differ in Avahi compared to day-active primates. Genotyping of the M/LWS opsin gene in 60 individuals from nine species found that the 558-nm-sensitive (red-sensitive) allele is conserved across all Avahi. Finally, we measured spectral reflectance from five species of young leaves consumed by Avahi and background foliage in Ranomafana National Park and modeled performance of possible S and M/L pigment pairs for detecting these food items under different nocturnal illuminations (e.g. twilight, moonlight). We found that the observed cone pigment pair in Avahi was optimally tuned for color-based detection of young green leaves in all nocturnal light environments, suggesting a potential adaptive role of nocturnal color vision in selection for dichromacy in this genus.  相似文献   

7.
We studied pollination ecology of the sympatric palms Attalea allenii and Wettinia quinaria in a tropical rain forest in Colombia. Attalea has a subterranean stem and Wettinia is tall and arboreal. Both species have thermogenesis and short anthesis, and their floral scents differ in chemical composition. Inflorescences of both palms are visited by beetles, bees and flies. Pollination is diurnal, and is effected mostly by two species of Mystrops (Nitidulidae: Nitidulinae: Mystropini) each of them specific to one palm species. Both palms share few visitors and no pollinators. Differences in scent composition probably cause this isolation. We contrast their diurnal pollination with nocturnal pollination of other palms by mystropines in Amazonia and elsewhere, and relate it to precipitation regimes. The diurnal anthesis of A. allenii and W. quinaria and the diurnal activity of their specific mystropines probably coevolved as a response to the high, predominantly nocturnal rainfall in the Chocó.  相似文献   

8.
Röll  Beate 《Brain Cell Biology》2000,29(7):471-484
Geckos comprise both nocturnal and diurnal genera, and between these categories there are several transitions. As all geckos depend on their visual sense for prey capture, they are promising subjects for comparison of morphological modifications of visual cells adapted to very different photic environments. Retinae of 22 species belonging to 15 genera with different activity periods are examined electron microscopically. Scotopic and photopic vision in geckos is not divided between “classical” rods and cones, respectively; both are performed by one basic visual cell type. Independent of the activity periods of the individual species, the visual cells of geckos exhibit characteristics of cones at all levels of their ultrastructure. Thus, gecko retinae have to be classified as cone retinae. Only the large size and the shape of the photoreceptor outer segments in nocturnal geckos are reminiscent of rods; the outer segments are up to 60 μm in length and up to 10 μm in diameter. The visual cells of diurnal geckos have considerably smaller outer segments with lengths ranging from 6 to 12 μm and diameters ranging from 1.3 to 2.1 μm. Nocturnal and diurnal species differ in the structure of their ellipsoids. One type of visual cell in nocturnal geckos has modified mitochondria with either rudimentary cristae or no cristae at all, and one type of visual cell in diurnal geckos possesses an oil droplet. The visual cells of Phelsuma guentheri and Rhoptropus barnardi are intermediate between those of nocturnal and diurnal species.  相似文献   

9.
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates.  相似文献   

10.
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.  相似文献   

11.
The dependence of metabolic processes on temperature constrains the behavior, physiology and ecology of many ectothermic animals. The evolution of nocturnality in lizards, especially in temperate regions, requires adaptations for activity at low temperatures when optimal body temperatures are unlikely to be obtained. We examined whether nocturnal lizards have cold-adapted lactate dehydrogenase (LDH). LDH was chosen as a representative metabolic enzyme. We measured LDH activity of tail muscle in six lizard species (n = 123: three nocturnal, two diurnal and one crepuscular) between 5 and 35 °C and found no differences in LDH-specific activity or thermal sensitivity among the species. Similarly, the specific activity and thermal sensitivity of LDH were similar between skinks and geckos. Similar enzyme activities among nocturnal and diurnal lizards indicate that there is no selection of temperature specific LDH enzyme activity at any temperature. As many nocturnal lizards actively thermoregulate during the day, LDH may be adapted for a broad range of temperatures rather than adapted specifically for the low temperatures encountered when the animals are active. The total activity of LDH in tropical and temperate lizards is not cold-adapted. More data are required on biochemical adaptations and whole animal thermal preferences before trends can be established.  相似文献   

12.
Mammalian species can be defined as diurnal or nocturnal, depending on the temporal niche during which they are active. Even if general activity occurs during nighttime in nocturnal rodents, there is a patchwork of general activity patterns in diurnal rodents, including frequent bimodality (so-called crepuscular pattern, i.e., dawn and dusk peaks of activity) and a switch to a nocturnal pattern under certain circumstances. This raises the question of whether crepuscular species have a bimodal or diurnal - as opposed to nocturnal - physiology. To this end, we investigated several daily behavioral, hormonal and neurochemical rhythms in the diurnal Sudanian grass rat (Arvicanthis ansorgei) and the nocturnal Long-Evans rat (Rattus norvegicus). Daily rhythms of general activity, wheel-running activity and body temperature, with or without blocked wheel, were diurnal and bimodal for A. ansorgei, and nocturnal and unimodal for Long-Evans rats. Moreover, A. ansorgei and Long-Evans rats exposed to light-dark cycles were respectively more and less active, compared to conditions of constant darkness. In contrast to other diurnal rodents, wheel availability in A. ansorgei did not switch their general activity pattern. Daily, unimodal rhythm of plasma leptin was in phase-opposition between the two rodent species. In the hippocampus, a daily, unimodal rhythm of serotonin in A. ansorgei occurred 7 h earlier than that in Long-Evans rats, whereas a daily, unimodal rhythm of dopamine was unexpectedly concomitant in both species. Multiparameter analysis demonstrates that in spite of bimodal rhythms linked with locomotor activity, A. ansorgei have a diurnally oriented physiology.  相似文献   

13.
Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral retinal projections to the lateral thalamus (GLd). We compared these visual traits in two visually active species of the genus Octodon that exhibit contrasting visual habits: the diurnal Octodon degus, and the nocturnal Octodon lunatus. The O. lunatus visual field has a prominent 100° frontal binocular overlap, much larger than the 50° of overlap found in O. degus. Cells in the retinal ganglion cell layer were 40% fewer in O. lunatus (180,000) than in O. degus (300,000). O. lunatus has a poorly developed visual streak, but a well developed area centralis, located centrally near the optic disk (peak density of 4,352 cells/mm2). O. degus has a highly developed visual streak, and an area centralis located more temporally (peak density of 6,384 cells/mm2). The volumes of the contralateral GLd and superior colliculus (SC) are 15% larger in O. degus compared to O. lunatus. However, the ipsilateral projections to GLd and SC are 500% larger in O. lunatus than in O. degus. Other retinorecipient structures related to ocular movements and circadian activity showed no statistical differences between species. Our findings strongly suggest that nocturnal visual behavior leads to an enhancement of the structures associated with binocular vision, at least in the case of these rodents. Expansion of the binocular visual field in nocturnal species may have a beneficial effect in light and contrast sensitivity, but not necessarily in stereopsis. We discuss whether these conclusions can be extended to other mammalian and non-mammalian amniotes.  相似文献   

14.
Summary Retinular fine structure has been compared in the superposition compound eyes of three sphingid moths, one nocturnal, Cechenena, and two diurnal, Cephonodes and Macroglossum. Cechenena and Cephonodes have tiered retinas with three kinds of retinular cells: two distal, six regular and one basal. The distal retinular cells in Cechenena are special in having a complex partially intracellular rhabdomere not present in Cephonodes. Macroglossum lacks the distal retinular cell. In Cephonodes a unique rhabdom type, formed by the six regular retinular cells in the middle region of the retinula, is divided into three separate longitudinal plates arranged closely parallel to one another. Their constituent microvilli are consequently all nearly unidirectional. The ratio of rhabdom volume to retinular cell volume in the two diurnal sphingids is 10–27%; this is about the same as that (25%) of skipper butterflies, but significantly smaller than in the nocturnal Cechenena (60%). In the diurnal sphingids retinular cell membranes show elongate meandering profiles with septate junctions between adjacent retinular cells. From the comparative fine structure of their eyes the diurnal sphingids and the skippers would appear to be phylogenetically closely related.Supported in part by grants from Ministry of Education Japan (Special Project Research in Animal Behaviors)  相似文献   

15.
The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light–dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal–nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers’ needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.  相似文献   

16.
The blood‐feeding juvenile stages of gnathiid isopods are important ectoparasites of marine fishes on the Great Barrier Reef (GBR), and are a major component of the diet of cleaner fishes. We report here that these gnathiids have undergone evolutionary diversification, both geographically and temporally (into diurnally and nocturnally active taxa), which has been accompanied by changes in their morphology and behaviour. To perform this analysis, we sequenced a portion of the nuclear ribosomal ITS2 for 47 gnathiids collected from 29 host fishes of 11 species at three locales spanning 2000 km on the GBR. Maximum parsimony and Bayesian phylogenetic analyses both revealed four major clades. There was some degree of geographical structuring in these clades, but there was no evidence supporting host fish specialization, as gnathiids collected from the skin of different teleost taxa did not resolve into distinct clades. The topology of the phylogeny also implied some structuring that was dependent upon collection time (day or night), so we investigated whether there were also behavioural and morphological differences between taxa active at these different times. Nocturnal gnathiids had significantly longer antennules and larger eyes than diurnal gnathiids – two traits presumably adaptive for nocturnal activity. Behavioural tests showed that both nocturnal and diurnal gnathiids use olfaction and vision while foraging, but that nocturnal gnathiids used olfaction more often in dark conditions, and that they were able to perceive movement under extremely low levels of light. Diurnal gnathiids used vision more effectively when there was some ambient light. Our results thus suggest that both phenotypic and genotypic divergence in gnathiids may be influenced by natural selection acting on ecological traits, such as predator avoidance and host detection. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 569–587.  相似文献   

17.
Searching for resources is often a challenging task, especially for small organisms such as insects. Complex stimuli have to be extracted from the environment and translated into a relevant behavioral output. A first step in this process is to investigate the relative roles of the different senses during search for various resources. While the role of olfaction is well documented in nocturnal moths, the olfactory abilities of the closely related diurnal butterflies are poorly explored. Here we investigated how olfactory information is used in the search for host plants and asked if these abilities varied with levels of stimulus complexity. Thus, we tested two nymphalid butterfly species with divergent host plant range in a two-choice olfactometer testing different combinations of host and non-host plants. The experiments show both the monophagous Aglais urticae and the polyphagous Polygonia c-album could navigate towards an odor source, but this ability varied with context. While mated females exhibited a preference for their host plant, unmated females of both species did not show a preference for host plant cues. Furthermore, both species showed inabilities to make fine-tuned decisions between hosts. We conclude that olfactory cues are important for butterflies to navigate towards targets. We argue that there are limitations on how much information can be extracted from host volatiles. These results are discussed in the light of neural processing limitations and degree of host plant specialization, suggesting the necessity of other sensory modalities to sharpen the decision process and facilitate the final oviposition event.  相似文献   

18.
Firefly luciferase genes have been isolated from approximately 20 species of Lampyrinae, Luciolinae, and Photurinae. These are mostly nocturnal luminescent species that use light signals for sexual communication. In this study, we isolated three cDNAs for firefly luciferase from Psilocladinae (Cyphonocerus ruficollis) and Ototretinae (Drilaster axillaris and Stenocladius azumai), which are diurnal non-luminescent or weakly luminescent species that may use pheromones for communication. The amino acid sequences deduced from the three cDNAs showed 81-89% identities to each other and 60-81% identities with known firefly luciferases. The three purified recombinant proteins showed luminescence and fatty acyl-CoA synthetic activities, as observed in other firefly luciferases. The emission maxima by the three firefly luciferases (λmax, 545-546 nm) were shorter than those by known luciferases from the nocturnal fireflies (λmax, 550-568 nm). These results suggest that the primary structures and enzymatic properties of luciferases are conserved in Lampyridae, but the luminescence colors were red-shifted in nocturnal species compared to diurnal species.  相似文献   

19.
With plants whose flowers open at night and stay open during the day, nocturnal pollinators may exploit floral resources before diurnal competitors. Moths, bats, and beetles are the most familiar nocturnal pollinators, whereas nocturnal bees as pollinators remain poorly understood. The common Cerrado tree Machaerium opacum (Fabaceae) has white and strongly scented melittophilous flowers, which first open at the night and remain open during the day and, thus, have the potential to be visited by both nocturnal and diurnal bees. We asked: (1) what is the plant’s breeding system? (2) when during the night do the flowers open? (3) what are the visual and olfactory floral cues? and (4) which nocturnal/diurnal bees visit and pollinate the flowers? We show that M. opacum is self-incompatible. Its flowers open synchronously at 03:30 h, produce nectar exclusively at night, and have an explosive mechanism of pollen presentation. The flowers have pure white petals, release strong scents during anthesis, and are pollinated by nocturnal and diurnal bees. We recorded four nocturnal and 17 diurnal species as flower visitors, with females of nocturnal species of Ptiloglossa (Colletidae) being the most abundant. After an initial pollen-releasing visit, only a minor amount of pollen remains in a flower. Several floral traits favor visits by nocturnal bees: (1) night-time flower opening, (2) nectar production at night, (3) almost complete pollen release during the first flower visit, and (4) pure white petals and strong odor production prior to sunrise, facilitating visual and olfactory detection of flowers when light is dim.  相似文献   

20.
Golden hamsters and thirteen-lined ground squirrels were maintained individually in a thermal gradient (14°C to 33°C) for several weeks under a 14L: 10D light-dark cycle. Animals of both species showed robust daily rhythms of body temperature and locomotor activity with acrophases consistent with the habits of the species (diurnal acrophases in the diurnal squirrels and nocturnal acrophases in the nocturnal hamsters). Hamsters showed a robust daily rhythm of temperature selection 180° out of phase with the rhythms of body temperature and locomotor activity. Squirrels did not show a daily rhythm of temperature selection. These results raise the hypothesis that a daily rhythm of temperature selection is exhibited by nocturnal but not by diurnal endotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号