首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Vascular endothelial cells produce nitric oxide (NO), which is a potent vasodilator substance and has been proposed as having antiatherosclerotic property. Vascular endothelial cells also produce endothelin-1 (ET-1), which is a potent vasoconstrictor peptide and has potent proliferating activity on vascular smooth muscle cells. Therefore, ET-1 has been implicated in the progression of atheromatous vascular disease. Because exercise training has been reported to produce an alteration in the function of vascular endothelial cells in animals, we hypothesized that exercise training influences the production of NO and ET-1 in humans. The purpose of the present study was to examine whether chronic exercise could influence the plasma levels of NO (measured as the stable end product of NO, i.e., nitrite/nitrate [NOx]) and ET-1 in humans. Eight healthy young subjects (20.3 +/- 0.5 yr old) participated in the study and exercised by cycling on a leg ergometer (70% VO2max for 1 hour, 3-4 days/week) for 8 weeks. Venous plasma concentrations of NOx and ET-1 were measured before and after (immediately before the end of 8-week exercise training) the exercise training, and also after the 4th and 8th week after the cessation of training. The VO2max significantly increased after exercise training. After the exercise training, the plasma concentration of NOx significantly increased (30.69 +/- 3.20 vs. 48.64 +/- 8.16 micromol/L, p < 0.05), and the plasma concentration of ET-1 significantly decreased (1.65 +/- 0.14 vs. 1.23 +/- 0.12 pg/mL, p < 0.05). The increase in NOx level and the decrease in ET-1 level lasted to the 4th week after the cessation of exercise training and these levels (levels of NOx and ET-1) returned to the basal levels (the levels before the exercise training) in the 8th week after the cessation of exercise training. There was a significant negative correlation between plasma NOx concentration and plasma ET-1 concentration. The present study suggests that chronic exercise causes an increase in production of NO and a decrease in production of ET-1 in humans, which may produce beneficial effects (i.e., vasodilative and antiatherosclerotic) on the cardiovascular system.  相似文献   

2.
Numerical and functional impairment of circulating endothelial progenitor cells (EPCs) is thought to contribute to vascular aging and the associated increase in cardiovascular risk. We tested the following hypotheses: 1) EPC clonogenic and migratory capacity decrease progressively with age in healthy, sedentary adult men; and 2) regular aerobic exercise will improve EPC clonogenic and migratory capacity in previously sedentary middle-aged and older men. Peripheral blood samples were collected from 46 healthy sedentary men: 10 young (26 +/- 1 yr), 15 middle-aged (47 +/- 1 yr), and 21 older (63 +/- 1 yr). Mononuclear cells were isolated and preplated for 2 days, and nonadherent cells were further cultured for 7 days to determine EPC colony-forming units. Migratory activity of EPCs was determined using a modified Boyden chamber. Ten sedentary middle-aged and older men (59 +/- 3 yr) were studied before and after a 3-mo aerobic exercise intervention. The number of EPC colony-forming units was approximately 75% lower (P < 0.01) in middle-aged (12 +/- 3) and older (8 +/- 2) compared with young (40 +/- 7) men. There was no difference in colony count between middle-aged and older men. EPC migration (fluorescent units) was significantly reduced in older (453 +/- 72) compared with young (813 +/- 114) and middle-aged (760 +/- 114) men. The exercise intervention increased (P < 0.05) both EPC colony-forming units (10 +/- 3 to 22 +/- 5) and migratory activity (683 +/- 96 to 1,022 +/- 123) in previously sedentary middle-aged and older men. These results provide further evidence that aging adversely affects EPC function. Regular aerobic-endurance exercise, however, is an effective lifestyle intervention strategy for improving EPC clonogenic and migratory capacity in middle-aged and older healthy men.  相似文献   

3.
Endurance training improves endothelium-dependent vasodilation, yet it does not increase basal blood flow in the legs. We determined the effects of a 3-mo aerobic exercise intervention on basal leg blood flow and alpha-adrenergic vasoconstriction and nitric oxide (NO) release in seven apparently healthy middle-aged and older adults (60 +/- 3 yr). Basal femoral artery blood flow (via Doppler ultrasound) (pretraining: 354 +/- 29; posttraining: 335 +/- 34 ml/min) and vascular conductance did not change significantly with the exercise training. Before the exercise intervention, femoral artery blood flow increased 32 +/- 16% with systemic alpha-adrenergic blockade (with phentolamine) (P < 0.05), and the addition of nitric oxide synthase (NOS) inhibition using N(G)-monomethyl-L-arginine (L-NMMA) did not affect femoral artery blood flow. After training was completed, femoral artery blood flow increased 47 +/- 7% with alpha-adrenergic blockade (P < 0.01) and then decreased 18 +/- 7% with the subsequent administration of L-NMMA (P < 0.05). Leg vascular conductance showed a greater alpha-adrenergic blockade-induced vasodilation (+1.7 +/- 0.5 to +3.0 +/- 0.5 units, P < 0.05) as well as NOS inhibition-induced vasoconstriction (-0.8 +/- 0.4 to -2.7 +/- 0.7 units, P < 0.05) after the exercise intervention. Resting plasma norepinephrine concentration significantly increased after the training. These results suggest that regular aerobic exercise training enhances NO bioavailability in middle-aged and older adults and that basal limb blood flow does not change with exercise training because of the contrasting influences of sympathetic nervous system activity and endothelium-derived vasodilation on the vasculature.  相似文献   

4.
Enhanced endothelin-1-mediated leg vascular tone in healthy older subjects.   总被引:1,自引:0,他引:1  
Advanced age is associated with a decreased leg blood flow and reduced physical activity. Endothelin (ET-1), a powerful vasoconstrictor, may play a role in the increased leg vascular tone in older men. objectives: to assess the ET-1-mediated vascular tone in the legs of healthy sedentary older men, both before and after 8 wk of exercise training. methods: in 8 younger subjects (19-50 yr) and 8 older men (67-76 yr), bilateral leg blood flow was measured using venous occlusion plethysmography before and after antagonizing ET-1 (using selective ET(A/B)-receptor antagonists). In older men, reversibility of the observations was assessed after 8 wk of cycling. results: ET-receptor inhibition increased leg blood flow significantly more in older men compared with younger individuals (29 +/- 9% and 10 +/- 4%, respectively, P < 0.05). Eight-week cycling training increased baseline blood flow in older men. The blood flow response to ET-receptor inhibition in older men was not affected by the training program (25 +/- 8%, P > 0.05 for comparison with pretraining). The flow ratio (blood flows infused leg/noninfused leg) decreased significantly by training from 26 +/- 8% to 7+3% (P < 0.05). CONCLUSION: the increased baseline vascular tone in aging is at least in part mediated by the endothelin. Eight-weeks cycling training in older sedentary men decreased leg vascular tone and seems to partly decrease the ET-1-mediated vascular tone.  相似文献   

5.
Sex-specific influence of aging on exercising leg blood flow.   总被引:1,自引:0,他引:1  
Our previous work suggests that healthy human aging is associated with sex-specific differences in leg vascular responses during large muscle mass exercise (2-legged cycling) (Proctor DN, Parker BA. Microcirculation 13: 315-327, 2006). The present study determined whether age x sex interactions in exercising leg hemodynamics persist during small muscle mass exercise that is not limited by cardiac output. Thirty-one young (20-30 yr; 15 men/16 women) and 31 older (60-79 yr; 13 men/18 women) healthy, normally active adults performed graded single-leg knee extensions to maximal exertion. Femoral artery blood velocity and diameter (Doppler ultrasound), heart rate (ECG), and beat-to-beat arterial blood pressure (mean arterial pressure, radial artery tonometry) were measured during each 3-min work rate (4.8 and 8 W/stage for women and men, respectively). The results (means +/- SE) were as follows. Despite reduced resting leg blood flow and vascular conductance, older men exhibited relatively preserved exercising leg hemodynamic responses. Older women, by contrast, exhibited attenuated hyperemic (young: 52 +/- 3 ml.min(-1).W(-1); vs. older: 40 +/- 4 ml.min(-1).W(-1); P = 0.02) and vasodilatory responses (young: 0.56 +/- 0.06 ml.min(-1).mmHg(-1).W(-1) vs. older: 0.37 +/- 0.04 ml.min(-1).mmHg(-1) W(-1); P < 0.01) to exercise compared with young women. Relative (percentage of maximal) work rate comparisons of all groups combined also revealed attenuated vasodilator responses in older women (P < 0.01 for age x sex x work rate interaction). These sex-specific age differences were not abolished by consideration of hemoglobin, quadriceps muscle, muscle recruitment, and mechanical influences on muscle perfusion. Collectively, these findings suggest that local factors contribute to the sex-specific effects of aging on exercising leg hemodynamics in healthy adults.  相似文献   

6.
I Miyamori  Y Takeda  T Yoneda  K Iki  R Takeda 《Life sciences》1991,49(18):1295-1300
We measured the ET-1 concentration in plasma and in the perfusate of the mesenteric arteries of rats treated with a therapeutic dose of IL-2 for 7 days (100000 U/Kg, iv.). The plasma ET-1 concentration in rats given IL-2 was 14.2 +/- 3.2 pg/ml which was significantly greater than that in the controls (2.5 +/- 0.4 pg/ml, P less than 0.05). The mesenteric arteries also released a significantly greater amount of ET-1 (29.5 +/- 1.6 pg/h) than that in controls (16.8 +/- 2.3 pg/h, P less than 0.01). The arterial blood pressure was significantly lower after IL-2 treatment than the pre-dosing level (P less than 0.05). It is concluded that IL-2 induces ET-1 release from the vascular wall, possibly as a result of reversible endothelial dysfunction caused by IL-2.  相似文献   

7.
Factors contributing to maximal incremental and short-term exercise capacity were measured before and after 12 wk of high-intensity endurance training in 12 old (60-70 yr) and 10 young (20-30 yr) sedentary healthy males. Peak O2 uptake in incremental cycle ergometer exercise increased from 1.60 +/- 0.073 to 2.21 +/- 0.073 (SE) l/min (38% increase) in the old subjects and from 2.54 +/- 0.141 to 3.26 +/- 0.181 l/min (29%) in the young subjects. Peak cardiac output, estimated by extrapolation from a series of submaximal measurements by the CO2 rebreathing method, increased by 30% (from 12.7 to 16.5 l/min) in the old subjects, associated with a 6% increase (from 126 to 135 ml/l) in arteriovenous O2 difference; in the young subjects there were equal 14% increases in both variables (18.0 to 20.5 l/min and 140 to 159 ml/l, respectively). Submaximal mean arterial pressure and cardiac output were lower posttraining in the old subjects; total vascular conductance and cardiac stroke volume increased. Although peak power at the start of a short-term maximal isokinetic test did not change, total work accomplished in 30 s at a pedaling frequency of 110 revolutions/min increased in both groups, from 11.2 to 12.6 kJ and from 15.7 to 16.9 kJ in the old and young, respectively; fatigue during the 30-s test was less, and postexercise plasma lactate concentrations were lower. In older subjects, increases in aerobic power after high-intensity endurance training are at least as large as in younger subjects and are associated with increases in vascular conductance, maximal cardiac output, and stroke volume.  相似文献   

8.
We sought to identify the relationship between shear stimuli and flow-mediated vasodilation and to determine whether small muscle mass exercise training could provoke limb-specific improvements in endothelial function in older subjects. In five young (22 +/- 1 yr old) and six old (71 +/- 2 yr old) subjects, ultrasound Doppler measurements were taken in the arm (brachial artery) and leg (deep and superficial femoral arteries) after suprasystolic cuff occlusion with and without ischemic exercise to evaluate flow-mediated dilation (FMD) in both limbs. Older subjects were reevaluated after 6 wk of single-leg knee extensor exercise training. Before the training, a significant FMD was observed in the arm of young (3 +/- 1%) but not old (1 +/- 1%) subjects, whereas a significant leg FMD was observed in both groups (5 +/- 1% old vs. 3 +/- 1% young). However, arm vasodilation was similar between young and old when normalized for shear rate, and cuff occlusion with superimposed handgrip exercise provoked additional shear, which proportionately improved the FMD response in both groups. Exercise training significantly improved arm FMD (5 +/- 1%), whereas leg FMD was unchanged. However, ischemic handgrip exercise did not provoke additional arm vasodilation after training, which may indicate an age-related limit to shear-induced vasodilation. Together, these data demonstrate that vascular reactivity is dependent on limb and degree of shear stimuli, challenging the convention of diminished endothelial function typically associated with age. Likewise, exercise training improved arm vasodilation, indicating some preservation of vascular plasticity with age.  相似文献   

9.
Obesity is associated with endothelial dysfunction that may contribute to the development of diabetes, hypertension, and atherosclerosis. Endothelin-1 (ET-1), which is produced mostly by vascular endothelial cells, has potent vasoconstrictor and proliferative activity in vascular smooth muscle cells and, therefore, has been implicated in regulation of vascular tonus and the progression of atherosclerosis, suggesting that ET-1 may be important in endothelial dysfunction. We studied whether diet-induced weight loss (i.e., lifestyle modification) affects plasma ET-1 concentration in obese individuals. We measured plasma ET-1 concentration in seven obese men (age: 48 +/- 4 years old, body mass index: 27.7 +/- 0.5 kg/m2) before and after a 3-month, diet-induced weight reduction program (i.e., lifestyle modification program). Caloric restriction reduced body weight from 78 +/- 3 to 68 +/- 2 kg (P < 0.001) and resulted in 12.1 +/- 1.2% reduction in body mass index (24.3 +/- 0.3 kg/m(2), P < 0.0001). After the weight reduction program, systolic and diastolic blood pressure significantly decreased (128 +/- 7 vs. 115 +/- 4 mm Hg, P < 0.05 and 88 +/- 4 vs. 77 +/- 2 mm Hg, P < 0.01, respectively). The plasma level of ET-1 significantly decreased after the program (5.1 +/- 0.4 vs. 4.0 +/- 0.3 pg/ml, P < 0.05). The percentage systolic blood pressure reduction and percentage plasma ET-1 concentration reduction was in a linear relationship (r = 0.86, P < 0.05). Furthermore, the relationship between percentage weight reduction and percentage plasma ET-1 concentration reduction was linear (r = 0.87, P < 0.05). We conclude that weight loss by low-calorie diet (i.e., lifestyle modification) reduces plasma ET-1 concentration in obese individuals. This reduction may contribute to the improvement of obesity-induced endothelial dysfunction.  相似文献   

10.
Although cerebral autoregulation (CA) appears well maintained during mild to moderate intensity dynamic exercise in young subjects, it is presently unclear how aging influences the regulation of cerebral blood flow during physical activity. Therefore, to address this question, middle cerebral artery blood velocity (MCAV), mean arterial pressure (MAP), and the partial pressure of arterial carbon dioxide (Pa(CO(2))) were assessed at rest and during steady-state cycling at 30% and 50% heart rate reserve (HRR) in 9 young (24 +/- 3 yr; mean +/- SD) and 10 older middle-aged (57 +/- 7 yr) subjects. Transfer function analysis between changes in MAP and mean MCAV (MCAV(mean)) in the low-frequency (LF) range were used to assess dynamic CA. No age-group differences were found in Pa(CO(2)) at rest or during cycling. Exercise-induced increases in MAP were greater in older subjects, while changes in MCAV(mean) were similar between groups. The cerebral vascular conductance index (MCAV(mean)/MAP) was not different at rest (young 0.66 +/- 0.04 cm x s(-1) x mmHg(-1) vs. older 0.67 +/- 0.03 cm x s(-1) x mmHg(-1); mean +/- SE) or during 30% HRR cycling between groups but was reduced in older subjects during 50% HRR cycling (young 0.67 +/- 0.03 cm x s(-1) x mmHg(-1) vs. older 0.56 +/- 0.02 cm x s(-1) x mmHg(-1); P < 0.05). LF transfer function gain and phase between MAP and MCAV(mean) was not different between groups at rest (LF gain: young 0.95 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.88 +/- 0.06 cm x s(-1) x mmHg(-1); P > 0.05) or during exercise (LF gain: young 0.80 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.72 +/- 0.07 cm x s(-1) x mmHg(-1) at 50% HRR; P > 0.05). We conclude that despite greater increases in MAP, the regulation of MCAV(mean) is well maintained during dynamic exercise in healthy older middle-aged subjects.  相似文献   

11.
We hypothesized that abnormal endothelium-dependent vasodilation (EDD) found in older otherwise healthy subjects can be attenuated with long-term endurance training. Ten endurance-trained men, 68.5 +/- 2.3 yr old, and 10 healthy sedentary men, 64.7 +/- 1.4 yr old, were studied. Aerobic exercise capacity (VO(2 max)), fasting plasma cholesterol, insulin, and homocysteine concentrations were measured. Master athletes had higher VO(2 max) (42 +/- 2.3 vs. 27 +/- 1.4 ml. kg(-1). min(-1), P < 0.001), slightly higher total cholesterol (226 +/- 8 vs. 199 +/- 8 mg/dl, P = 0.05), similar insulin, and higher homocysteine (10.7 +/- 1.3 vs. 9.2 +/- 1.4 micromol/ml, p = 0.02) concentrations. Brachial arterial diameter, determined with vascular ultrasound, during the hyperemic response was greater in the master athletes than in controls (P = 0.005). Peak vasodilatory response was 109.1 +/- 2 vs. 103.6 +/- 2% (P < 0.05) in the athletes and controls, respectively. Endothelium-independent vasodilation in response to nitroglycerin was similar between the two groups. The increased arterial diameter during the hyperemic response correlated significantly with the VO(2 max) in the entire population (r = 0.66, P < 0.002). Our results suggest that long-term endurance exercise training in older men is associated with systemic enhanced EDD, which is even detectable in the conduit arteries of untrained muscle.  相似文献   

12.
We investigated the influence of aging on cardiac baroreflex function during dynamic exercise in seven young (22 +/- 1 yr) and eight older middle-aged (59 +/- 2 yr) healthy subjects. Carotid-cardiac baroreflex function was assessed at rest and during moderate-intensity steady-state cycling performed at 50% heart rate reserve (HRR). Five-second pulses of neck pressure and neck suction from +40 to -80 Torr were applied to determine the operating point gain (G(OP)) and maximal gain (G(MAX)) of the full carotid-cardiac baroreflex function curve and examine baroreflex resetting during exercise. At rest, mean arterial pressure (MAP) and heart rate were similar between the younger and older subjects. In contrast, the resting G(OP) and G(MAX) were significantly lower in the older subjects. The increase in MAP from rest to exercise was greater in the older subjects (Delta +20 +/- 2 older vs. Delta +6 +/- 3 younger mmHg; P < 0.001). However, the G(OP) was similar in both groups during exercise because of a reduction in the younger subjects. In contrast, G(MAX) was unchanged from rest and therefore remained lower in older subjects (-0.19 +/- 0.05 older vs. -0.42 +/- 0.05 younger beats.min(-1).mmHg(-1); 50% HRR; P < 0.001). Furthermore, exercise resulted in an upward and rightward resetting of the cardiac baroreflex function curve in both groups. Collectively, these findings suggest that the cardiac baroreflex function curve appropriately resets during exercise in older subjects but operates at a reduced G(MAX) primarily because of age-related reductions in carotid-cardiac control manifest at rest.  相似文献   

13.
We measured leg blood flow (LBF), drew arterial-venous (A-V) blood samples, and calculated muscle O(2) consumption (VO(2)) during incremental cycle ergometry exercise [15, 30, and 99 W and maximal effort (maximal work rate, WR(max))] in nine sedentary young (20 +/- 1 yr) and nine sedentary old (70 +/- 2 yr) males. LBF was preserved in the old subjects at 15 and 30 W. However, at 99 W and at WR(max), leg vascular conductance was attenuated because of a reduced LBF (young: 4.1 +/- 0.2 l/min and old: 3.1 +/- 0.3 l/min) and an elevated mean arterial blood pressure (young: 112 +/- 3 mmHg and old: 132 +/- 3 mmHg) in the old subjects. Leg A-V O(2) difference changed little with increasing WR in the old group but was elevated compared with the young subjects. Muscle maximal VO(2) and cycle WR(max) were significantly lower in the old subjects (young: 0.8 +/- 0.05 l/min and 193 +/- 7 W; old: 0.5 +/- 0.03 l/min and 117 +/- 10 W). The submaximally unchanged and maximally reduced cardiac output associated with aging coupled with its potential maldistribution are candidates for the limited LBF during moderate to heavy exercise in older sedentary subjects.  相似文献   

14.
Groups of endurance-trained masters athletes (60 +/- 2 yr), older untrained men (62 +/- 1 yr), lean older untrained men (61 +/- 2 yr), endurance-trained young athletes (26 +/- 1 yr), and young untrained men (28 +/- 1 yr) were studied to obtain information on the separate effects of age, physical activity, and body fatness on glucose tolerance and insulin sensitivity. Each subject underwent an oral 100-g glucose tolerance test. Skinfold thickness was determined at six sites. The trained groups had a higher maximum O2 uptake capacity and lower sum of skinfolds than their sedentary peers. The lean older untrained group had a sum of skinfolds similar to that of the young untrained group. The masters athletes, young athletes, and young untrained men exhibited similar glucose tolerance whereas the two older untrained groups had an almost twofold greater total area under the glucose curve (P less than 0.05). The masters and young athletes had significantly blunted plasma insulin responses compared with the other three groups (P less than 0.05). The young and the lean older untrained groups had similar plasma insulin responses with significantly lower insulin levels than the older untrained group (P less than 0.05). These results provide evidence that regularly performed vigorous exercise can, in some individuals, prevent the deterioration of glucose tolerance and insulin sensitivity with age.  相似文献   

15.
Age-related reductions in basal limb blood flow and vascular conductance are associated with the metabolic syndrome, functional impairments, and osteoporosis. We tested the hypothesis that a strength training program would increase basal femoral blood flow in aging adults. Twenty-six sedentary but healthy middle-aged and older subjects were randomly assigned to either a whole body strength training intervention group (52 +/- 2 yr, 3 men, 10 women) who underwent three supervised resistance training sessions per week for 13 wk or a control group (53 +/- 2 yr, 4 men, 9 women) who participated in a supervised stretching program. At baseline, there were no significant differences in blood pressure, cardiac output, basal femoral blood flow (via Doppler ultrasound), vascular conductance, and vascular resistance between the two groups. The strength training group increased maximal strength in all the major muscle groups tested (P < 0.05). Whole body lean body mass increased (P < 0.05) with strength training, but leg fat-free mass did not. Basal femoral blood flow and vascular conductance increased by 55-60% after strength training (both P < 0.05). No such changes were observed in the control group. In both groups, there were no significant changes in brachial blood pressure, plasma endothelin-1 and angiotensin II concentrations, femoral artery wall thickness, cardiac output, and systemic vascular resistance. Our results indicate that short-term strength training increases basal femoral blood flow and vascular conductance in healthy middle-aged and older adults.  相似文献   

16.
Aging is associated with a decline in vascular endothelial function, manifesting in part as impaired flow-mediated arterial dilation (FMD), but the underlying mechanisms are uncertain. Impaired FMD may be mediated in part by a decrease in synthesis of nitric oxide by endothelial nitric oxide synthase, and in clinical populations this has been attributed to competitive inhibition of l-arginine binding sites by asymmetric dimethylarginine (ADMA). If this mechanism is involved in the age-associated decline in FMD, increasing l-arginine concentration may swing the competitive balance in favor of l-arginine binding, restoring nitric oxide synthesis, and enhancing FMD in older humans. To test this hypothesis, we measured FMD (brachial ultrasound) in 10 younger (21 +/- 1 yr) and 12 older healthy men and women (60 +/- 2 yr) following infusion of vehicle or vehicle + l-arginine. Baseline FMD in the older subjects was only approximately 60% of that in the younger subjects (P = 0.002). l-Arginine did not significantly increase FMD in either group despite 23-fold (older) and 19-fold (younger) increases in plasma l-arginine concentrations (P < 0.0001 vs. control). Protein expression (immunofluorescence) in vascular endothelial cells showed that ADMA and the enzyme isoform that controls its degradation, dimethylarginine dimethylaminohydrolase II, were not different in the younger and older subjects. Endothelium-independent vasodilation (sublingual nitroglycerine) was not different between age groups or conditions. We conclude that acutely increasing plasma concentrations of l-arginine do not significantly improve brachial artery FMD in healthy older subjects and thus does not restore the age-associated loss of FMD. Together with the finding that endothelial cell ADMA protein expression was not increased in older adults, these findings suggest that competitive inhibition of l-arginine binding sites on endothelial nitric oxide synthase by ADMA is not an important mechanism contributing to impaired conduit artery endothelium-dependent dilation with aging in healthy humans.  相似文献   

17.
Age-related changes in neurogenic vasodilation mediated by sensory nerves may alter local skin blood flow (SkBF) responses in older individuals. The purpose of this study was to determine the age-specific modification of cutaneous vasodilation by capsaicin-sensitive primary afferent (CSPA) nerves during local heating. Nine young (18-30 yr), eight middle-aged (40-55 yr), and eight older (65-80 yr) healthy men participated in the experiments. Two local-heating protocols (rapid and slow) were performed before and after 1 wk of capsaicin pretreatment (CP), used to desensitize CSPAs. All temperatures were below those that elicit pain. SkBF was measured with a laser-Doppler imager and indexed to percentage of maximal cutaneous vascular conductance (%CVCmax). CP caused a significant reduction in %CVCmax in the middle-aged and older groups during slow heating (P < 0.05), without affecting %CVCmax in the young group. During rapid heating, CP significantly reduced (53.9 +/- 4.4 vs. 74.4 +/- 7.4% CVCmax, P < 0.05), but did not abolish, the initial sensory nerve-mediated rise in SkBF in the young group. No significant effects of CP on SkBF were observed during rapid heating in the middle-aged or older groups. These results indicate that, with advanced age, CSPA activity is more important to the maximal SkBF response during prolonged local heating, whereas it has a reduced role in the initial SkBF peak elicited by rapid local heating. In summary, CSPA activity contributes modestly to the overall SkBF response to local heating in an age-specific manner.  相似文献   

18.
The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.  相似文献   

19.
The aim of the current investigation was to determine the possible relationships of fasting adiponectin level with body composition, bone mineral, insulin sensitivity, leptin, and cardiorespiratory fitness parameters in 153 women. Subjects were classified as premenopausal (n = 42; 40.8 +/- 5.7 yr) if they had regular menstrual periods, early postmenopausal (n = 49; 56.7 +/- 3.6 yr) if they had been postmenopausal for more than >1 yr but <7 yr (5.5 +/- 1.3 yr), and postmenopausal (n = 62; 72.2 +/- 4.5 yr) if they had been postmenopausal for >7 yr. All women studied had a body mass index (BMI) <30 kg/m(2). Adiponectin values were higher (P < 0.05) in middle-aged (12.0 +/- 5.1 microg/ml) and older (15.3 +/- 7.3 microg/ml) postmenopausal women compared with middle-aged premenopausal women (8.4 +/- 3.2 microg/ml). Mean plasma adiponectin concentration in the total group of women (n = 153) was 12.2 +/- 6.3 microg/ml and was positively related (P < 0.05) to age, indexes of overall obesity (BMI, body fat mass), and cardiorespiratory fitness (PWC) values. In addition, a negative association (P < 0.05) between adiponectin with central obesity (waist-to-hip and waist-to-thigh ratio), fat-free mass, bone mineral (bone mineral content, total and lumbar spine bone mineral density), and leptin and insulin resistance (insulin, fasting insulin resistance index) values was observed. However, multivariate regression analysis revealed that only age, fasting insulin resistance index, and leptin were independent predictors of adiponectin concentration. In conclusion, circulating adiponectin concentrations increase with age in normal-weight middle-aged and older women. It appears that adiponectin is independently related to age, leptin, and insulin resistance values in women across the age span and menstrual status.  相似文献   

20.
Inhibition of a sympathetic stimulus (i.e., sympatholysis) during forearm exercise is reduced with age in women. This age-related alteration has not been characterized in the lower extremity vasculature of women, and the potential for blunting of the conduit artery dilatory response to a sudden increase in shear stress [flow-mediated dilation (FMD)] has not been examined in older adults of either sex. In the present study, we assessed popliteal artery diameter and velocity (Doppler ultrasound) in 16 young (23 +/- 1 yr) and 14 older (69 +/- 1 yr) women after 5 min of distal calf occlusion (FMD), 3 min of hand immersion in ice water [cold pressor test (CPT)], and 5 min of distal calf occlusion combined with hand immersion in ice water (FMD+CPT). Peak popliteal conductance after 5-min ischemia was not significantly different in young vs. older women. During the combined stimulus (FMD+CPT), the magnitude of vasoconstriction in the calf (reduction in peak popliteal artery conductance) was similar (5-8%), despite reduced resting adrenergic sensitivity to CPT [young (Y): -27.3 +/- 3.8%; older (O): -15.8 +/- 2.2%; P < 0.05] and blunted muscle sympathetic nerve activity responses to CPT (Y: 12.7 +/- 3.6 bursts/min; O: 7.8 +/- 2.5 bursts/min; P < 0.05) in older women. Popliteal FMD, normalized to the shear stimulus, was attenuated by 60-70% in older women. Peak popliteal diameter, measured during the combined stimulus (FMD+CPT), was blunted in young but not in older women (Y FMD: 5.5 +/- 0.1 mm; Y FMD+CPT: 5.4 +/- 0.1 mm; P = 0.03; O FMD: 5.8 +/- 0.2 mm; O FMD+CPT: 5.8 +/- 0.2 mm). These results confirm previous findings of diminished reactivity in the conduit arteries of older humans and provide the first evidence of reduced sympatholysis in the leg resistance vasculature of older women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号