首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The unconventional motor protein, myosin VI, is known to dimerize upon cargo binding to its C-terminal end. It has been shown that one of its tail domains, called the medial tail domain, is a dimerization region. The domain contains an unusual pattern of alternating charged residues and a few hydrophobic residues. To reveal the unknown dimerization mechanism of the medial tail domain, we employed molecular dynamics and single-molecule experimental techniques. Both techniques suggest that the formation of electrostatic-based interhelical salt bridges between oppositely charged residues is a key dimerization factor. For the dimerization to occur, the two identical helices within the dimer do not bind in a symmetric fashion, but rather with an offset of about one helical repeat. Calculations of the dimer-dissociation energy find the contribution of hydrophobic residues to the dimerization process to be minor; they also find that the asymmetric homodimer state is energetically favorable over a state of separate helices.  相似文献   

5.
6.
Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.  相似文献   

7.
Cole SD  Schleif R 《Proteins》2012,80(5):1465-1475
An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments.  相似文献   

8.
9.
Deletion of the regulatory N-terminal arms of the AraC protein from its dimerization domain fragments increases the susceptibility of the dimerization domain to form a series of higher order polymers by indefinite self-association. We investigated how the normal presence of the arm inhibits this self-association. One possibility is that arms can act as an entropic bristles to interfere with the approach of other macromolecules, thereby decreasing collision frequencies. We examined the repulsive effect of flexible arms by measuring the rate of trypsin cleavage of a specially constructed ubiquitin-arm protein. Adding an arm to ubiquitin or increasing its length produced only a modest repulsive effect. This suggests that arms such as the N-terminal arm of AraC do not reduce self-association by entropic exclusion. We consequently tested the hypothesis that the arm on AraC reduces self-association by binding to the core of the dimerization domain even in the absence of arabinose. The behaviors of dimerization domain mutants containing deletions or alterations in the N-terminal arms substantiate this hypothesis. Apparently, interactions between the N-terminal arm and the dimerization domain core position the arm to interfere with the protein-protein contacts necessary for self-association.  相似文献   

10.
The previously isolated hemiplegic, induction-negative, repression-positive mutants, H80R and Y82C, were found to be defective in the binding of arabinose. Randomization of other residues close to arabinose in the three-dimensional structure of AraC or that make strong interactions with arabinose yielded induction-negative, repression-positive mutants. The induction and repression properties of mutants obtained by randomizing individual residues of the N-terminal arm of AraC allowed identification of the domain with which that residue very likely makes its predominant interactions. Residues 8-14 of the arm appear to make their predominant interaction with the DNA-binding domain. Although the side-chain of residue 15 interacts directly with arabinose bound to the N-terminal dimerization domain, the properties of mutant F15L indicate that this mutation increases the affinity of the arm for the DNA-binding domain.  相似文献   

11.
12.
13.
The arabinose-binding pockets of wild type AraC dimerization domains crystallized in the absence of arabinose are occupied with the side chains of Y31 from neighboring domains. This interaction leads to aggregation at high solution concentrations and prevents determination of the structure of truely apo AraC. In this work we found that the aggregation does not significantly occur at physiological concentrations of AraC. We also found that the Y31V mutation eliminates the self-association, but does not affect regulation properties of the protein. At the same time, the mutation allows crystallization of the dimerization domain of the protein with only solvent in the arabinose-binding pocket. Using a distance difference method suitable for detecting and displaying even minor structural variation among large groups of similar structures, we find that there is no significant structural change in the core of monomers of the AraC dimerization domain resulting from arabinose, fucose, or tyrosine occupancy of the ligand-binding pocket. A slight change is observed in the relative orientation of monomers in the dimeric form of the domain upon the binding of arabinose but its significance cannot yet be assessed.  相似文献   

14.
Archaeal Group II chaperonins (Cpns) are strongly conserved, considering that their growth temperatures range from 23 to 122 °C. The C-terminal 15–25 residues are hypervariable, and highly charged in thermophilic species. Our hypothesis is that the C-terminal is a key determinant of stabilization of the Cpn complex. The C-terminus of the Cpn from the hyperthermophile Pyrococcus furiosus was mutated to test this hypothesis. C-terminal deletions and replacement of charged residues resulted in destabilization. The stability of ATPase activity declined in proportion to the reduction in charged residues with Ala or Gly. An EK-rich motif (528EKEKEKEGEK537) proved to be a key domain for stabilization at or near 100 °C. Mutations “tuned” the Cpn for optimal protein folding at lower optimal temperatures, and Glu substitution was more potent than Lys replacement. Pf Cpn stability was enhanced by Ca2+, especially in the mutant Cpn lacking C-terminal Lys residues. This suggests that Glu-Glu interactions between C termini might be mediated by Ca2+. The C-terminal of a Cpn from the psychrophilic archaeon Methanococcoides burtonii was replaced by a domain from the hyperthermophile, resulting in increased thermostability and thermoactivity. We conclude that localized evolutionary variation in the C-terminus modulates the temperature range of archaeal Cpns.  相似文献   

15.
16.
17.
The chromatin decondensation activity, thermal stability, and secondary structure of recombinant nucleoplasmin, of two deletion mutants, and of the protein isolated from Xenopus oocytes have been characterized. As previously reported, the chromatin decondensation activity of recombinant, unphosphorylated nucleoplasmin is almost negligible. Our data show that deletion of 50 residues at the C-terminal domain of the protein, containing the positively charged nuclear localization sequence, activates its chromatin decondensation ability and decreases its stability. Interestingly, both the decondensation activity and thermal stability of this deletion mutant resemble those of the phosphorylated protein isolated from Xenopus oocytes. Deletion of 80 residues at the C-terminal domain, containing the above-mentioned positively charged region and a poly(Glu) tract, inactivates the protein and increases its thermal stability. These findings, along with the effect of salt on the thermal stability of these proteins, suggest that electrostatic interactions between the positive nuclear localization sequence and the poly(Glu) tract, at the C-terminal domain, modulate protein activity and stability.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号