首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic lipase: a member of a family of structurally related lipases   总被引:1,自引:0,他引:1  
Partial amino acid sequence of rat hepatic lipase was obtained by gas-phase microsequence analysis of proteolytic fragments. Sequence comparison to bovine lipoprotein lipase and porcine pancreatic lipase reveals a highly conserved region existing among these three physiologically distinct lipolytic enzymes. In a stretch of 36 amino acid residues previously reported for pancreatic lipase (De Caro, J., Boudouard, M., Bonicel, J., Guidoni, A., Desnuelle, P. and Rovery, M. (1981) Biochim. Biophys. Acta 671, 129-138), nineteen residues are identical for all three enzymes, whereas 27 of 36 are identical in rat hepatic lipase and bovine lipoprotein lipase. The fact that this primary structural conservation extends to three different animal species emphasizes the conclusion that these lipolytic enzymes comprise a protein family originating from a common ancestral gene.  相似文献   

2.
Human hepatic lipase is an important enzyme in high density lipoprotein (HDL) metabolism, being implicated in the conversion of HDL2 to HDL3. Three human hepatic lipase cDNA clones were identified in two lambda gt11 libraries from human liver. The cDNA-derived amino acid sequence predicts a protein of 476 amino acid residues, preceded by a 23-residue signal peptide. Four potential N-glycosylation sites are identified, two of which are conserved in rat hepatic lipase. On alignment with human, mouse, and bovine lipoprotein lipase, the same two sites were also conserved in lipoprotein lipase in all three species. Stringent conservation of the cysteine residues was also evident. Comparative analysis of amino acid sequences shows that hepatic lipase evolves at a rapid rate, 2.07 x 10(-9) substitutions/site/year, about four times that in lipoprotein lipase and half that in pancreatic lipase. Further, hepatic lipase and pancreatic lipase appear to be evolutionarily closer to each other than either of them is to lipoprotein lipase. Southern blot analysis revealed high frequency restriction fragment length polymorphisms of the hepatic lipase gene for the enzymes HindIII and MspI. these polymorphisms will be useful for haplotype and linkage analysis of the hepatic lipase gene. Using cloned human hepatic lipase cDNA as a hybridization probe, we performed Southern blot analysis of a panel of 13 human-rodent somatic cell hybrids. Concordance analysis of the various hybrid clones indicates that the hepatic lipase gene is located on the long arm of human chromosome 15. Analysis of hybrids containing different translocations of chromosome 15 localized the gene to the region 15q15----q22.  相似文献   

3.
Lipoprotein lipase and salt-resistant lipase were isolated from human post-heparin plasma. The proteins of human post-plasma lipoprotein lipase and salt-resistant lipase were identified and demonstrated to be immunologically different. Significant differences between the two enzymes in their relative amino acid composition were demonstrated, which indicates that the two enzymes are different proteins. When analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the enzymes seemed to have monomer molecular weights similar to that of lipoprotein lipase purified from bovine milk.  相似文献   

4.
A lipoprotein lipase species (mol wt 69 250) has been isolated from rat postheparin plasma, which differs from the low-molecular-weight species previously characterized in its amino acid composition and hexosamine content, and in its lower affinity for triglyceride-rich lipoprotein substrates. However, both enzymes are activated by the same coprotein (C-terminal glutamic acid, apo-C-2) from human very low density lipoprotein and have a similar specificity for lipid esters. Neither purified enzyme is activated by heparin. Both are inhibited by molar sodium chloride. Both enzyme species can be recovered from the same plasma samples. The possible relationship of these proteins to the different functional lipoprotein lipase activities of muscle and adipose tissues is discussed.  相似文献   

5.
cDNA clones for chicken adipose lipoprotein lipase were isolated from an expression library in lambda gt11 by antibody screening and characterized by hybridization selection and nucleotide sequencing. Based on the cDNA sequence and on N-terminal sequence analysis of the purified enzyme, chicken adipose lipoprotein lipase is a mature protein of 465 amino acids with a signal peptide of 19 or 25 amino acids, depending on which of two methionine residues is used for translation initiation. The predicted amino-acid sequence was found to be 73-77% identical to the four known mammalian adipose lipoprotein lipase sequences, with conservation of position of cysteine residues and putative functional domains, and number of potential N-glycosylation sites. Chicken lipoprotein lipase differs from mammalian lipoprotein lipases with respect to the position of one N-glycosylation site and the presence of an additional 15-17 C-terminal amino acids. 32P-labeled cDNA clones hybridized to mRNA species of 3.7 and 4.0 kb in Northern blots of heart and adipose, but not of liver RNA. In chickens that were fasted for 48 h and then refed, lipoprotein lipase mRNA levels in adipose increased to a maximal level of 350% that of controls at 10 h, whereas heart lipoprotein lipase mRNA levels fell to 40% of controls at 14 h. Concomitantly, no changes in total RNA were observed. Thus, avian lipoprotein lipase is subject to reciprocal pretranslational regulation in adipose and heart.  相似文献   

6.
Karlsson M  Reue K  Xia YR  Lusis AJ  Langin D  Tornqvist H  Holm C 《Gene》2001,272(1-2):11-18
Monoglyceride lipase (MGL) functions together with hormone-sensitive lipase to hydrolyze intracellular triglyceride stores of adipocytes and other cells to fatty acids and glycerol. In addition, MGL presumably complements lipoprotein lipase in completing the hydrolysis of monoglycerides resulting from degradation of lipoprotein triglycerides. Cosmid clones containing the mouse MGL gene were isolated from a genomic library using the coding region of the mouse MGL cDNA as probe. Characterization of the clones obtained revealed that the mouse gene contains the coding sequence for MGL on seven exons, including a large terminal exon of approximately 2.6 kb containing the stop codon and the complete 3' untranslated region. Two different 5' leader sequences, diverging 21 bp upstream of the predicted translation initiation codon, were isolated from a mouse adipocyte cDNA library. Western blot analysis of different mouse tissues revealed protein size heterogeneities. The amino acid sequence derived from human MGL cDNA clones showed 84% identity with mouse MGL. The mouse MGL gene was mapped to chromosome 6 in a region with known homology to human chromosome 3q21.  相似文献   

7.
Lindberg A  Olivecrona G 《Gene》2002,292(1-2):213-223
Previously we found lipase activity with characteristics similar to lipoprotein lipase (LPL) in tissues from rainbow trout [Biochim. Biophys. Acta 1255 (1995) 205], whereas no equivalent to the related hepatic lipase could be found. An equivalent to apolipoprotein CII was also identified and characterized [Gene 254 (2000) 189]. We present here the full nucleotide sequence for LPL from rainbow trout (Oncorhynchus mykiss) and have investigated some properties of the enzyme. In contrast to what has been found in mammals, LPL mRNA was expressed in livers of adult trout. This indicates that trout LPL carries out functions that hepatic lipase has evolved to take over in mammals. Trout LPL was unstable at 37 degrees C compared with bovine and human LPL. Two sequence differences that may relate to the instability are that trout LPL lacks the disulfide bridge in the C-terminal domain and lacks Pro(258). This residue is conserved in LPL from all mammals and has been shown to be critical for enzyme stability at 37 degrees C. On chromatography on heparin-Sepharose trout and chicken LPL eluted at higher salt concentration than bovine (or other mammalian) LPL. The C-terminal end of LPL has been implied in heparin binding and the higher heparin affinity of the trout and chicken enzymes may be because they have 17 and 15 extra amino acid residues at the C-terminal end, of which three residues are positively charged.  相似文献   

8.
Jin W  Broedl UC  Monajemi H  Glick JM  Rader DJ 《Genomics》2002,80(3):268-273
We report here the molecular cloning of a novel member of the triglyceride lipase family, a 2.4-kb cDNA encoding human lipase H (LIPH) and the mouse ortholog (Liph). The human LIPH cDNA encodes a 451-amino-acid protein with a lipase domain. Mouse Liph shows 85% amino acid identity and 75% nucleotide identity to human LIPH. Human LIPH exhibits 47% identity with phosphatidylserine-specific phospholipase A1 (PS-PLA1) and 46% identity with endothelial lipase (LIPG) and lipoprotein lipase (LPL). LIPH is localized on human chromosome 3q27-q28. Northern blot analysis revealed specific expression of LIPH mRNA in intestine, lung, and pancreas. Lipase H protein was also detected in human intestine. Lipase H is a secreted protein with an apparent molecular weight of 63 kDa. Although several lipid substrates were tested, the lipid substrate of LIPG was not identified. Like the other members of this gene family, LIPH may be involved in lipid and energy metabolism.  相似文献   

9.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

10.
A 1.7-kb cDNA clone encoding the entire precursor of the E1 beta subunit of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex was isolated from a bovine liver cDNA library by screening with a mixture of synthetic oligonucleotide probes corresponding to the C-terminal five-residue sequence of the mature E1 beta subunit. A partial amino acid sequence was determined by Edman degradation of the intact subunit and the peptides generated by cleavage at the lysyl bonds. Nucleotide sequence analysis revealed that the isolated cDNA clone contained the 5'-untranslated sequence of 186 nucleotides, the translated sequence of 1176 nucleotides, and the 3'-untranslated sequence of 306 nucleotides with a poly(A) tail. A type AATAAA polyadenylation signal was located 17 nucleotides upstream of the start of a poly(A) tail. Comparison of the amino acid sequence predicted from the nucleotide sequence of the cDNA insert of the clone with the partial amino acid sequence of the mature BCKDH E1 beta subunit showed that the cDNA insert encodes for a 342 amino acid subunit with Mr 37,745 and that the subunit is synthesized as the precursor with a leader sequence of 50 amino acids and processed at the N-terminus. Northern blot analysis using the cDNA insert as a probe showed the presence of a 1.8-1.9-kb mRNA in bovine liver, suggesting that the insert covers nearly a full length of mRNA. Alignment of the deduced amino acid sequence of bovine BCKDH E1 beta with that of the human pyruvate dehydrogenase (PDH) complex E1 beta subunit revealed a high degree of sequence homology throughout the two enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Hepatic triglyceride lipase was isolated from human post-heparin plasma by the method of Ehnholm et al. using modifications which increased the specific activity 12-fold to approximately 3,000 mumol of free fatty acid/h/mg of protein. Lipoprotein lipase with similar specific activity was prepared from the same plasma samples using heparin and concanavalin A affinity chromatography. The molecular weight of hepatic triglyceride lipase (69,000) was slightly greater than that of lipoprotein lipase (67,000) as determined by polyacrylamide electrophoresis in sodium dodecyl sulfate-containing buffers. These proteins had identical amino acid compositions, terminal amino acid residues, and tryptic peptide maps. However, the differences previously described regarding optima of pH and ionic strength and the requirement for apolipoprotein CII (only for lipoprotein lipase) were maintained in the highly purified state. It was found that both proteins contain approximately 8% carbohydrate. Antisera prepared in goats selectively precipitated each activity. Other antisera prepared in chickens reacted with both enzymes, suggesting a common antigenic determinant.  相似文献   

13.
Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We report the cloning of a full-length cDNA encoding rat preproendothelin-1 (preproET-1). The predicted rat preproET-1 consists of 202 amino acid residues and highly similar to human, porcine and bovine preproET-1, respectively. The deduced 21-residue sequence of mature rat ET-1 is identical to human, porcine, canine and bovine ET-1. As in other mammalian species, the mature ET-1 is predicted to be produced from a 39-residue big ET-1 in the rat. Northern blot analysis showed that a single 2.3-kb preproET-1 mRNA is expressed not only in vascular endothelial cells but also in other rat tissues, including the lung, brain, uterus, stomach, heart, adrenal gland and kidney. These findings suggest that ET-1 may play roles as a local mediator in multiple organs both within and outside the cardiovascular system in the rat.  相似文献   

15.
Structure of the human hepatic triglyceride lipase gene   总被引:7,自引:0,他引:7  
S J Cai  D M Wong  S H Chen  L Chan 《Biochemistry》1989,28(23):8966-8971
The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5' and 254 bp of the 3' flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residues 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains [Deeb & Peng (1989) Biochemistry 28, 4131-4135]. Our observations strongly support the common evolutionary origin of these two lipolytic enzymes.  相似文献   

16.
M J Haas  J Allen  T R Berka 《Gene》1991,109(1):107-113
A lambda gt11 cDNA library was constructed in Escherichia coli using poly(A)-selected mRNA from the fungus, Rhizopus (Rp.) delemar. Lipase-producing members of the library were identified by means of a phenotypic score wherein the release of fatty acids by lipase causes a characteristic color change in the growth medium. One such isolate contained a 1287-bp insert (LIP cDNA) which hybridizes to 1.25- to 1.35-kb mRNA species from Rp. delemar. The lipase produced in E. coli containing the LIP cDNA exhibits the same substrate selectivity as the authentic fungal enzyme, hydrolyzing ester bonds at the stereospecific numbering (sn) sn-1 and sn-3, but not the sn-2, positions of triglycerides. The complete nucleotide sequence of the LIP cDNA was determined. By reference to the N-terminal sequence of authentic Rp. delemar lipase, the lipase-encoding region was identified within this fragment. The LIP cDNA encodes a putative preprolipase consisting of a 26-amino-acid(aa) signal sequence, a 97-aa propeptide, and a 269-aa mature enzyme. The predicted mature lipase has the same molecular weight and aa composition as that of Rp. delemar, is highly homologous to that produced by the fungus Rhizomucor miehei, and contains the consensus pentapeptide (Gly-Xaa-Ser-Yaa-Gly) which is conserved among lipolytic enzymes. It is concluded that the LIP cDNA is an essentially full-length analogue of the lipase-encoding gene of Rp. delemar. The lipase encoded by the LIP cDNA occupies a cytoplasmic location when synthesized in E. coli. Unprocessed forms of the lipase accumulate in E. coli.  相似文献   

17.
The lipase gene family   总被引:1,自引:0,他引:1  
Development of the lipase gene family spans the change in science that witnessed the birth of contemporary techniques of molecular biology. Amino acid sequencing of enzymes gave way to cDNA cloning and gene organization, augmented by in vitro expression systems and crystallization. This review traces the origins and highlights the functional significance of the lipase gene family, overlaid on the background of this technical revolution. The gene family initially consisted of three mammalian lipases [pancreatic lipase (PL), lipoprotein lipase, and hepatic lipase] based on amino acid sequence similarity and gene organization. Family size increased when several proteins were subsequently added based on amino acid homology, including PL-related proteins 1 and 2, phosphatidylserine phospholipase A1, and endothelial lipase. The physiological function of each of the members is discussed as well as the region responsible for lipase properties such as enzymatic activity, substrate binding, heparin binding, and cofactor interaction. Crystallization of several lipase gene family members established that the family belongs to a superfamily of enzymes, which includes esterases and thioesterases. This superfamily is related by tertiary structure, rather than amino acid sequence, and represents one of the most populous families found in nature.  相似文献   

18.
19.
20.
A new lipoprotein lipase-like gene has been cloned from endothelial cells through a subtraction methodology aimed at characterizing genes that are expressed with in vitro differentiation of this cell type. The conceptual endothelial cell-derived lipase protein contains 500 amino acids, including an 18-amino acid hydrophobic signal sequence, and is 44% identical to lipoprotein lipase and 41% identical to hepatic lipase. Comparison of primary sequence to that of lipoprotein and hepatic lipase reveals conservation of the serine, aspartic acid, and histidine catalytic residues as well as the 10 cysteine residues involved in disulfide bond formation. Expression was identified in cultured human umbilical vein endothelial cells, human coronary artery endothelial cells, and murine endothelial-like yolk sac cells by Northern blot. In addition, Northern blot and in situ hybridization analysis revealed expression of the endothelial-derived lipase in placenta, liver, lung, ovary, thyroid gland, and testis. A c-Myc-tagged protein secreted from transfected COS7 cells had phospholipase A1 activity but no triglyceride lipase activity. Its tissue-restricted pattern of expression and its ability to be expressed by endothelial cells, suggests that endothelial cell-derived lipase may have unique functions in lipoprotein metabolism and in vascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号