首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 × 10−8 M for the dissociation constant and 0.98 μmol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates.  相似文献   

2.
We report the cloning and characterization of a gene encoding a ferulic acid esterase, faeA, from Aspergillus niger and Aspergillus tubingensis. The A. niger and A. tubingensis genes have a high degree of sequence identity and contain one conserved intron. The gene product, FAEA, was overexpressed in wild-type A. tubingensis and a protease-deficient A. niger mutant. Overexpression of both genes in wild-type A. tubingensis and an A. niger protease-deficient mutant showed that the A. tubingensis gene product is more sensitive to degradation than the equivalent gene product from A. niger. FAEA from A. niger was identical to A. niger FAE-III (C. B. Faulds and G. Williamson, Microbiology 140:779-787, 1994), as assessed by molecular mass, pH and temperature optima, pI, N-terminal sequence, and activity on methyl ferulate. The faeA gene was induced by growth on wheat arabinoxylan and sugar beet pectin, and its gene product (FAEA) released ferulic acid from wheat arabinoxylan. The rate of release was enhanced by the presence of a xylanase. FAEA also hydrolyzed smaller amounts of ferulic acid from sugar beet pectin, but the rate was hardly affected by addition of an endo-pectin lyase.  相似文献   

3.
Agro-industrial by-products are a potential source of added-value phenolic acids with promising applications in the food and pharmaceutical industries. Here two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids such as caffeic acid, p-coumaric acid and ferulic acid from coffee pulp, apple marc and wheat straw. Their hydrolysis activity was evaluated and compared with their action on maize bran and sugar beet pulp. The specificity of both enzymes against natural and synthetic substrates was evaluated; particular attention was paid to quinic esters and lignin monomers. The efficiency of both enzymes on model substrates was studied. We show the ability of these enzymes to hydrolyze quinic esters and ester linkages between phenolic acids and lignin monomer.  相似文献   

4.
[目的] 分析鉴定高效木质纤维素降解菌群EMSD5来源的新型甘露聚糖酶-乙酰酯酶双功能酶44884,解析催化域间的协同关系,以及碳水化合物结合模块(CBM)对催化域特性的影响,拓展对该类双功能酶的认识,为甘露聚糖酶的升级改造和应用提供依据。[方法] 通过大肠杆菌异源表达甘露聚糖酶-乙酰酯酶双功能酶44884,并构建截短和定点突变的突变体,利用TLC和DNS法比较野生型和突变体的酶学性质。[结果] 成功对44884全长和突变蛋白进行克隆表达,并发现44884中2个催化域能够彼此促进各自产物的释放,而且以双功能酶形式存在时,这种促进效果更为明显。44884中的2个CBM65均有甘露聚糖和结晶纤维素结合活性,且CBM65的存在并不改变甘露聚糖酶和乙酰酯酶的最适反应条件和水解模式。虽然CBM65显著降低了2个催化域的热稳定性,但水解天然底物时,2个CBM65对各自临近催化域的水解具有明显的促进效果。[结论] 本研究首次发现并探究了新型甘露聚糖酶和乙酰酯酶形成的双功能酶44884的功能,解析了催化域之间高效的协同效应,以及新型甘露聚糖结合模块CBM65对双功能酶水解的促进作用。  相似文献   

5.
The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.  相似文献   

6.
In the cell walls of forage grasses, ferulic acid is esterified to arabinoxylans and participates with lignin monomers in oxidative coupling pathways to generate ferulate–polysaccharide–lignin complexes that cross-link the cell wall. Such cross-links hinder cell wall degradation by ruminant microbes, reducing plant digestibility. In this study, genetically modified Festuca arundinacea plants were produced expressing an Aspergillus niger ferulic acid esterase (FAEA) targeted to the vacuole. The rice actin promoter proved to be effective for FAEA expression, as did the cauliflower mosaic virus (CaMV) 35S and maize ubiquitin promoters. Higher levels of expression were, however, found with inducible heat-shock and senescence promoters. Following cell death and subsequent incubation, vacuole-targeted FAEA resulted in the release of both monomeric and dimeric ferulic acids from the cell walls, and this was enhanced several fold by the addition of exogenous endo-1,4-β-xylanase. Most of the FAEA-expressing plants showed increased digestibility and reduced levels of cell wall esterified phenolics relative to non-transformed plants. It is concluded that targeted FAEA expression is an effective strategy for improving wall digestibility in Festuca and, potentially, other grass species used for fodder or cellulosic ethanol production.  相似文献   

7.
As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH-7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate-limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate-binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4-10 degrees C) and more active (two- to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45 degrees C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70 degrees C, however, was the 2-module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three-dimensional homology models of these enzymes.  相似文献   

8.
Improving the catalytic activity of cellulases requires screening variants against solid substrates. Expressing cellulases in microbial hosts is time‐consuming, can be cellulase specific, and often leads to inactive forms and/or low yields. These limitations have been obstacles for improving cellulases in a high‐throughput manner. We have developed a cell‐free expression system and used it to express 54 chimeric bacterial and archaeal endoglucanases (EGs), with and without cellulose binding modules (CBMs) at either the N‐ or C‐terminus, in active enzyme yields of 100–350 µg/mL. The platform was employed to systematically study the role of CBMs in cellulose hydrolysis toward a variety of natural and pretreated solid substrates, including ionic‐liquid pretreated Miscanthus and AFEX‐pretreated corn stover. Adding a CBM generally increased activity against crystalline Avicel, whereas for pretreated substrates the effect of CBM addition depended on the source of cellulase. The cell‐free expression platform can thus provide insights into cellulase structure‐function relationships for any substrate, and constitutes a powerful discovery tool for evaluating or engineering cellulolytic enzymes for biofuels production. Biotechnol. Bioeng. 2010;107:601–611. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
The main goals of this work were to produce the fusion protein of the Trichoderma reesei swollenin I (SWOI) and Aspergillus niger feruloyl esterase A (FAEA) and to study the effect of the physical association of the fusion partners on the efficiency of the enzyme. The fusion protein was produced up to 25 mg l−1 in the T. reesei strains Rut-C30 and CL847. In parallel, FAEA alone was produced for use as a control protein in application tests. Recombinant FAEA and SWOI–FAEA were purified to homogeneity and characterized. The biochemical and kinetic characteristics of the two recombinant proteins were found to be similar to those of native FAEA, except for the temperature stability and specific activity of the SWOI–FAEA. Finally, the SWOI–FAEA protein was tested for release of ferulic acid from wheat bran. A period of 24 h of enzymatic hydrolysis with the SWOI–FAEA improved the efficiency of ferulic acid release by 50% compared with the results obtained using the free FAEA and SWOI. Ferulic acid is used as an antioxidant and flavor precursor in the food and pharmaceutical industries. This is the first report of a potential application of the SWOI protein fused with an enzyme of industrial interest.  相似文献   

10.
The ability of members of Aspergillus sections Nigri, Flavi, and Terrei to produce feruloyl esterases was studied according to their substrate specificity against synthetic methyl esters of hydroxycinnamic acids. Type A feruloyl esterases (FAEA), induced during growth on cereal-derived products, show a preference for the phenolic moiety of substrates that contain methoxy substitutions, as found in methyl sinapinate, whereas type B feruloyl esterases (FAEB) show a preference for the phenolic moiety of substrates that contain hydroxyl substitutions, as occurs in methyl caffeate. All the strains of Aspergillus section Nigri (e.g., A. niger and A. foetidus) were able to produce feruloyl esterases with activity profiles similar to those reported for FAEA and FAEB of A. niger when grown on oat-spelt xylan and sugar beet pulp, respectively. The two genes encoding these proteins, faeA and faeB, were identified by Southern blot analysis. The strains of Aspergillus sections Flavi (e.g., A. flavus, A. flavo-furcatus, and A. tamarii) and Terrei (e.g., A. terreus) were able to produce type A and type B enzymes. faeA was revealed in genomic DNA of these strains, and FAEA was determined by immunodetection in cultures grown in oat-spelt xylan. In addition, type B enzymes, not related to faeB, were efficiently induced by oat-spelt xylan and exhibited very original activity profiles on sugar beet pulp. This work confirms that the members of the genus Aspergillus are good feruloyl esterase producers.  相似文献   

11.
The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHΔCBM and EngYΔCBM devoid of the CBM lost activity toward all substrates including CMC. EngKΔCBM and EngMΔCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

12.
In order to make cost-effective bioethanol from dynamic lignocellulosic material, we require potentially acting and stable cellulolytic enzymes. In our investigation, the hyperthermostable endoglucanase Cel5A from Thermotoga maritima was subjected to site-directed mutagenesis and carbohydrate-binding module (CBM) engineering. For this purpose, amino acids around the active-site region were targeted. Results indicated that five single mutants showed a shift in optimal pH from 5 to 5.4. The N147E mutant displayed 10% higher activity than native Cel5A. Domain engineering was performed with fungal and bacterial CBM. In addition, CBM1 from (CBHII) Trichoderma reesei and CBM6 from Clostridium stercorarium xylanase A were fused with Cel5A. Both the CBM-engineered Cel5A showed 14-18-fold higher hydrolytic activity towards Avicel. Immuno-gold labeling assay of engineered enzymes further indicated the relativity that exists between binding ability and activity.  相似文献   

13.
14.
The degradation products of water-soluble wheat arabinoxylans treated with Aspergillus niger ferulic acid esterase (FAEA-able to cleave 5,5'- and 8-O-4'-ferulic acid dimers) have been characterised by atomic force microscopy (AFM) and size exclusion chromatography. The AFM images of arabinoxylans confirmed that a small proportion ( approximately 15%) of the population of arabinoxylan molecules contain xylan-based branches attached to the xylan-based backbone. Treatment with FAEA reduced the contour length of the molecules suggesting that certain dimeric ferulic acid linkages may play a previously unconfirmed role in the elongation of arabinoxylans. Overnight treatment with FAEA led to a reduction in the density of branches suggesting that they may also be linked to the backbone through phenolic linkages.  相似文献   

15.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.  相似文献   

16.
A cinnamoyl esterase, ferulic acid esterase A, from Aspergillus niger releases ferulic acid and 5-5- and 8-O-4-dehydrodiferulic acids from plant cell walls. The breakage of one or both ester bonds from dehydrodimer cross-links between plant cell wall polymers is essential for optimal action of carbohydrases on these substrates, but it is not known if cinnamoyl esterases can break these cross-links by cleaving one of the ester linkages which would not release the free dimer. It is difficult to determine the mechanism of the reaction on complex substrates, and so we have examined the catalytic properties of ferulic acid esterase A from Aspergillus niger using a range of synthetic ethyl esterified dehydrodimers (5-5-, 8-5-benzofuran and 8-O-4-) and two 5-5-diferulate oligosaccharides. Our results show that the esterase is able to cleave the three major dehydrodiferulate cross-links present in plant cell walls. The enzyme is highly specific at hydrolysing the 5-5- and the 8-5-benzofuran diferulates but the 8-O-4-is a poorer substrate. The hydrolysis of dehydrodiferulates to free acids occurs in two discrete steps, one involving dissociation of a monoesterified intermediate which is negatively charged at the pH of the reaction. Although ferulic acid esterase A was able to release monoesters as products of reactions with all three forms of diesters, only the 5-5- and the 8-O-4-monoesters were substrates for the enzyme, forming the corresponding free diferulic acids. The esterase cannot hydrolyse the second ester bond from the 8-5-benzofuran monoester and therefore, ferulic acid esterase A does not form 8-5-benzofuran diferulic acid. Therefore, ferulic acid esterase A from Aspergillus niger contributes to total plant cell wall degradation by cleaving at least one ester bond from the diferulate cross-links that exist between wall polymers but does not always release the free acid product.  相似文献   

17.
Hydrolysis of probe substrates, eight possible monodeoxy and mono-O-methyl analogs of p-nitrophenyl alpha-D-glucopyranoside (pNP alpha-D-Glc), modified at the C-2, C-3, C-4, and C-6 positions, was studied as part of investigations into the glycon specificities of seven alpha-glucosidases (EC 3.2.1.20) isolated from Saccharomyces cerevisiae, Bacillus stearothermophilus, honeybee (two enzymes), sugar beet, flint corn, and Aspergillus niger. The glucosidases from sugar beet, flint corn, and A. niger were found to hydrolyze the 2-deoxy analogs with substantially higher activities than against pNP alpha-D-Glc. Moreover, the flint corn and A. niger enzymes showed hydrolyzing activities, although low, for the 3-deoxy analog. The other four alpha-glucosidases did not exhibit any activities for either the 2- or the 3-deoxy analogs. None of the seven enzymes exhibited any activities toward the 4-deoxy, 6-deoxy, or any of the methoxy analogs. The hydrolysis results, with the deoxy substrate analogs, demonstrated that alpha-glucosidases having remarkably different glycon specificities exist in nature. Further insight into the hydrolysis of deoxyglycosides was obtained by determining the kinetic parameters (k(cat) and K(m)) for the reactions of sugar beet, flint corn, and A. niger enzymes.  相似文献   

18.
【目的】阐明嗜热细菌Clostridium thermocellum Xyn Z蛋白的阿魏酸酯酶催化域的酶学特性,为其在生物质能源及其它发酵工业中的应用奠定基础。【方法】分别构建了C.thermocellum Xyn Z的阿魏酸酯酶催化域(FAE)及该阿魏酸酯酶催化域和碳水化合物结合域(FAE-CBM6)编码基因的原核表达载体,并在大肠杆菌菌株BL21(DE3)中异源表达,在此基础上分析比较了温度、pH、底物、金属离子及CBM6结合域对阿魏酸酯酶活性的影响。【结果】重组FAE酶及FAE-CBM6酶发挥催化活性的适宜pH值为5.0-9.0,适宜温度为50-70°C,它们对不同金属离子的响应有差异。【结论】在同一反应条件下,FAE-CBM6酶的酶活均比FAE高,说明CBM6结合域的存在对于阿魏酸酯酶活性有促进作用。  相似文献   

19.
20.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号