首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Abstract: The Na+ and K+ concentrations in isolated Torpedo marmorata synaptosomes were determined. Synaptosomes made according to the method of Israël et al. have high internal Na+ (290 MM) and low internal K+ (30 mM) concentrations. Modification of the homogenisation media permitted the isolation of synaptosomes which could maintain transmembrane ion gradients (internal Na+, 96 mM; K+, 81 mM); 0.1 mM-ouabain abolished these gradients. The trans-membrane Na+ gradient started to dissipate after 15 min at 20°C. Inclusion of ATP in the homogenisation medium enabled the synaptosomes to maintain the Na+ gradient for about 90 min. The presence of these transmembrane ion gradients stimulated choline uptake sevenfold. It is concluded that (a) by selecting the isolation media, Torpedo synaptosomes can be prepared with transmembrane ion gradients; (b) these gradients are ouabain-sensitive and stimulate choline uptake: (c) the synaptosomes require additional ATP to maintain the ion gradients.  相似文献   

2.
CHARACTERISTICS OF D-GLUCOSAMINE UPTAKE BY RAT BRAIN SYNAPTOSOMES   总被引:1,自引:1,他引:0  
Abstract— The uptake of D-glucosamine by rat brain synaptosomes is studied as a function of time, temperature and synaptosomal protein and substrate concentrations. The rate of D-glucosamine uptake, after correcting for simple diffusion, obeys Michaelis-Menten kinetics. The apparent kinetic constants for the uptake process are Km = 2.5 0.8 m m , Vmax = 3.7 ± 1.2 nmol/mg protein/min. D-Glucose, D-mannose, 2-deoxy-D-glucose and 3-0-methyl-o-glucose are potent inhibitors of D-glucosamine uptake. 2-Deoxy-D-glucose and D-glucosamine inhibit the uptake of one another in a simple competitive manner, indicating their sharing of a common transport system. Cytochalasin B, phloretin and phloridzin are powerful competitive inhibitors of D-glucosamine uptake with apparent inhibitor constants ( K1 ) of 7.0 × 10-5, 2.3 × 10-3 and 0.4 mM, respectively. The uptake is unaffected by Na+, Li+ and Mg2+, partially inhibited by NH4+, Mn2+ and Ca2+, and slightly stimulated by PO4-ions. D-Glucosamine uptake is also sensitive to inhibition by several sulfhydryl reagents, thus implying the involvement of sulfhydryl groups in the transport process. The apparent affinity constants for synaptosomal transport for both D-glucosamine and 2-deoxy-D-glucose are about 4 times greater in 7-day-old than in the adult rat brains.  相似文献   

3.
Abstract In neuroblastoma × glioma hybrid cells, a cell line of neuronal character, a saturable uptake system for taurine is found which displays high affinity and high capacity ( K m= 38 μ m , V = 1.25 nmol mg−1 min−1)- Only the closely related structural analogues hypotaurine and β-alanine are able to inhibit the transport of radioactively labeled taurine. Imipramine or haloperidol at 100 μ m effectively blocks taurine uptake. High-affinity taurine uptake shows an absolute and highly specific requirement for Na+. The hybrid cells internalize taurine very slowly and, with 1 m m extracellular taurine, attain a plateau only after more than 20 h, at which time approximately 34 m m labeled taurine has accumulated in the cytosol. Generally there is hardly any spontaneous release of accumulated taurine. Efflux can, however, be induced by increasing the intracellular Na+ content and is then accelerated by lowering the extracellular Na+ concentration. The hypothesis is forwarded that taurine may exert its function by driving the extrusion of Na+ in emergency situations.  相似文献   

4.
Using excised roots of Atriplex hortensis L., cv. Gelbe Gartenmelde, the uptake, accumulation and xylem transport of K+ and Na+ have been measured. Influx as well as xylem transport proved to discriminate little between K+ and Na+, when considered in relation to the external solution. Both K+ and Na+ inhibited the uptake and xylem transport of each other to about the same degree. Measurements of intracel-lular Na+ fluxes by means of compartment analysis indicated that the low degree of K/Na discrimination during uptake was due to low influx selectivity. Moreover, K+/Na+ exchange at the plasmalemma was not very efficient in Atriplex roots. In order to establish the basis of the low K/Na discrimination in xylem transport, the rates of K+ and Na+ transport were related to the cytoplasmic K+ and Na+ concentrations to yield the selectivity ratio of transport, S(transport) = (φcx(K) × [Na+]c)/(φcx(Na) × [K+]c). Under all conditions this ratio was far below one indicating that Na+ was favoured during xylem release in excised roots of Atriplex at low external concentrations. The implications of this discrimination in favour of Na+ are discussed with respect to salt tolerance of A. hortensis .  相似文献   

5.
Abstract: The voltage-dependent Na+ ionophore of various neuronal cells is permeable not only to Na+ ions but also to guanidinium ions. Therefore, the veratridine-(or aconitine-) stimulated influx of [14C]guanidinium in neuroblastoma × glioma hybrid cells was measured to characterize the Na+ ionophore of these cells. Half-maximal stimulation of guanidinium uptake was seen at 30 μ M veratridine. At 1 m M guanidinium, the veratridine-stimulated uptake of guanidinium was lowered to 50% by approximately 60 m M Li+, Na+, or K+ and by a few millimolar Mn2+, Co2+, or Ni2+. The basal, as well as the veratridine-stimulated, uptake of guanidinium was inhibited by the cholinergic antagonists (+)-tubocurarine ( Ki = 50 to 500 n M ) and atropine ( Ki = 5 to 30 μ M ) and the adrenergic antagonists phentolamine ( Ki = 5 μ M ) and propranolol ( Ki = 60 μ M ). The specificity of the inhibitory effects of these agents is stressed by the ineffectiveness of various other neurotransmitter antagonists. However, the corresponding ionophore in neuroblastoma cells (clone N1E-115) seems to be regulated differently. While phentolamine and propranolol inhibit the veratridine-activated uptake as in the hybrid cells, (+)-tubocurarine and atropine exert only a slight effect.  相似文献   

6.
CATION MODULATION OF SYNAPTOSOMAL RESPIRATION   总被引:16,自引:14,他引:2  
Abstract— Synaptosomes were prepared from the cerebral cortex of the adult rat by a rapid technique, involving the use of centrifugation in a Ficoll-sucrose discontinuous gradient. Adequate respiratory control ratios were obtained with glutamate and succinate plus rotenone. The addition of Na+ to the incubation medium stimulated synaptosomal, State-4 respiration, with a half-maximal response at 15 mM Na+. The stimulation by Na+ was inhibited by atractylate, oligomycin, ouabain or EDTA. A cooperative interaction between Na+ and low concentrations of Mg2+ was observed. A significant proportion (39 per cent) of the total Na-K ATPase (EC 3.6.1.4) activity in the discontinuous gradient was localized in the synaptosomal fraction. In the absence of exogenous Mg2+, Na+ induced a 64 per cent stimulation of the synaptosomal ATPase activity which was sensitive to ouabain. Such stimulation of ATP hydrolysis would account for the formation of increased amounts of ADP, with consequent recycling to ATP through adequately controlled oxidative phosphorylation. These observations demonstrate a significant role for transmembrane cationic gradients in the control of synaptosomal respiration and mitochondrial oxidative phosphorylation. The preparation exhibits moderate respiratory control and should prove useful in studies of integrated mitochondrial oxidative metabolism and neuronal membrane function.  相似文献   

7.
Abstract Sulfate uptake was investigated with four species of phototrophic sulfur bacteria. Rhodobacter sulfidophilus and Chromatium vinosum took up 35S-labeled sulfate added in micromolar concentrations. Sulfate uptake by C. vinosum was expressed only under sulfate starvation. R. sulfidophilus took up 10 μM sulfate almost completely and accumulated it up to 5300-fold, also when grown with excess sulfate. Sulfite (1 mM) as an intermediate of sulfate assimilation inhibited sulfate uptake completely within 1 min. Moderate inhibition was observed with cysteine (1 mM) and none with sulfide (1 mM). Transport was not dependent on the cations K+, Na+, Li+ or protons, but was sensitive to uncouplers and to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). The accumulation of sulfate correlated with the ATP concentration in the cells, indicating an ATP-dependent uptake mechanism.  相似文献   

8.
Abstract. The effect of fusicoccin (FC) on the K+stimulated Na+ efflux in root cells of Na+ loaded barley roots was studied. FC (0.02 mM) stimulated Na+ efflux in the presence of K+ and its effect was synergistic with that of K+, in a similar way as its effect on proton extrusion. Decreasing the pH of the elution medium promoted Na+ efflux and partially replaced the effect of FC. As FC is known to increase the electrochemical proton gradient at the plasmalemma level, these results are consistent with the hypothesis that Na+ is extruded in exchange for H+. A further support to this view came from the finding that Na+ efflux was also promoted by a lipophilic cation, tributylbenzylammonium (TBBA +), which stimulates H + extrusion and is generally accepted not to enter the cells by means of the same carrier as K +.  相似文献   

9.
Abstract The effect of the external cations Na+ and Ca2+ on polymorphonuclear chemiluminescence was investigated. Both Ca2+ in the range of 0.2–2 mM and Na+ in the range of 114–143 mM showed a dose dependent increase in polymorphonuclear chemiluminescence, irrespective of the concurrent increase in osmolality. The Na+/H+ antiport inhibitor Amiloride decreased the response significantly. These effects were observed using buffers commonly used for chemiluminescence studies and indicate the importance of defining the Ca2+ and Na+ composition of the buffers used in chemiluminescence assays.  相似文献   

10.
Abstract: A novel fluorescent Na+ indicator, Na+-binding benzofuran isophthalate (SBFI), was used to follow changes in the intracellular free Na+ concentration ([Na+]1) of synaptosomes. The dye, when loaded into synapto- somes in the form of its acetoxymethyl ester, was responsive to changes of [Na+]1. Calibration was made using the 340/380 nm excitation ratio when the cytoplasmic Na+ concentration was equilibrated with different concentrations of extracellular Na+ in the presence of 2 μ M gramicidin D. The basal value of [Na+]1 in synaptosomes in the presence of 140 m M extracellular Na+ was found to be 10.9 ± 1.8 m M. Veratridine, which opens potential-dependent Na+ channels, caused a sudden increase in [Na+]1 in a concentration-dependent manner (1 -20 μ M ), whereas the effect of ouabain (20 and 50 μ M ), the inhibitor of the plasma membrane Na+,K+-ATPase, was more gradual. The rise in the fluorescence intensity upon addition of veratridine was prevented completely by 2 μ M tetrodotoxin. α-Latrotoxin, the black widow spider toxin, caused an increase in the fluorescence intensity, which became evident 1 min after the addition of the toxin. The rate of increase was proportional to the concentration of the toxin (0.19–1.5 n M ). This report confirms our earlier finding demonstrating a Na+-dependent component in the action of α-Iatrotoxin, and shows that changes in [Na+]1 in synaptosomes can be followed by SBFI.  相似文献   

11.
Abstract: We examined the mechanism underlying the ATP-induced increase in the cytosolic Ca2+ concentration ([Ca]in) in acutely isolated chick ciliary ganglion neurons, using fura-2 microfluorometry. The ATP-induced increase in [Ca]in was dependent on external Ca2+, was blocked in a dose-dependent manner by reactive blue 2, and was substantially inhibited by both L- and N-type Ca2+ channel blockers. ATP was effective in increasing [Ca]in in the presence of a desensitizing concentration of nicotine (100 µ M ), and simultaneous addition of maximal doses of ATP and nicotine caused an additive increase in [Ca]in, suggesting that ATP acts on a site distinct from nicotinic acetylcholine receptors. ATP also increased the cytosolic Na+ concentration as determined by sodium-binding benzofuran isophthalate microfluorometry. These results suggest that ATP increases Na+ influx through P2 purinoceptor-associated channels resulting in membrane depolarization, which in turn increases Ca2+ influx through voltage-dependent Ca2+ channels. However, ATP still caused a small increase in [Ca]in under Na+-free conditions, and this [Ca]in increase was little affected by Ca2+ channel blockers. ATP also increased Mn2+ influx under Na+-free conditions, as indicated by quenching of fura-2 fluorescence. These results suggest that nonselective cationic channels activated by ATP are permeable not only to Ca2+ but also to Mn2+, in addition to monovalent cations.  相似文献   

12.
Na+ influx and efflux in Neurospora crassa RL21a can be studied separately to calculate net Na+ movements. In the absence of external K+, Na+ influx was independent of the K+ content of the cells, but when K+ was present, the inhibition of Na+ influx by external K+ was higher the higher the K+ content. Efflux depended on the K+ and Na+ content, and on the history of the cells. Efflux was higher the higher the Na+ and K+ contents, and, in low-K+ cells, the efflux was also higher in cells grown in the presence of Na+ than when Na+ was given to cells grown in the absence of Na+. Addition of K+ to cells in steady state with external Na+ resulted in a net Na+-loss. In cells grown without Na+ this loss was a consequence of the inhibition of Na+ influx. In Na+-grown cells, addition of K+ inhibited Na+ influx and increased Na+ efflux.  相似文献   

13.
Abstract: The acute effects of serum on sodium-potassium (Na+-K+) pump activity and glucose uptake in cultured rat skeletal muscle were studied. Addition of serum to myo-tubes in phosphate-buffered saline caused Na+-K+ pump activity (as measured by changes in the ouabain-sensitive component of both membrane potential and 86Rb uptake) to increase, with peak effects obtained after 30 min. The effect was blocked completely by treatment with amiloride, but not by tetrodotoxin, which blocks voltage-dependent Na+ channels. On transfer of myotubes to Na+-free, choline buffer, resting Na+-K+ pump activity decreased to about 10% of that in phosphate-buffered saline. Addition of regular serum, but not Na+-free serum, caused Na+-K+ pump activity to increase slightly. Similar results were obtained with serum on glucose uptake, the peak effect being reached within 15 min. Stimulation of glucose uptake by serum was partially reduced by amiloride and was not altered by tetrodotoxin. Removal of external Na+ also eliminated serum effects on glucose uptake. The results demonstrate that there are similar signals involving Na+-H+ exchange for serum-induced increases in Na+-K+ pump activity and glucose transport. The lack of complete blockade of serum-induced elevation of glucose transport suggests an additional, as yet undefined, intracellular signal for stimulation of this transport system.  相似文献   

14.
Membrane-bound MgATPase activity from roots of young sugar beet ( Beta vulgaris L. cv. Monohill) was investigated in a membrane fraction purified by partition in an aqueous polymer two-phase system. After two steps of "washing" with fresh bottom phase (rich in dextran), the polyethylene glycol rich top phase (U3) was practically free of mitochondrial membranes (cytochrome oxidase), and the remaining MgATPase activity showed high substrate specificity for ATP. An optimum for the MgATPase activity was found at pH 7. The activation by Na+ or K+ was strongest on the acid side without any observable shift in pH optimum. Oligomycin had no effect, but vanadate strongly inhibited the U3 MgATPase and the K+ activation was lost. The complex activation pattern achieved by varying the Na+/K+ ratio at constant total concentration was interpreted as a synergistic (Na++ K+)-activation. The U3 fraction MgATP-ase activity showed a 4-fold increase in the presence of 0.01% Triton X-100 implying that the MgATPase activity is located in vesicles of which 75% or more are sealed with the ATP binding site on the inside. Comparison with the properties of plasma membrane. ATPases from other plants indicated that the U3 fraction MgATPase was mainly of plasma membrane origin.  相似文献   

15.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

16.
Abstract: Elevated extracellular potassium concentration ([K+]e) has been shown to induce reversal of glial Na+-dependent glutamate uptake in whole-cell patch clamp preparations. It is uncertain, however, whether elevated [K+]e similarly induces a net glutamate efflux from intact cells with a physiological intracellular milieu. To answer this question, astrocyte cultures prepared from rat and mouse cortices were incubated in medium with elevated [K+]e (by equimolar substitution of K+ for Na+), and glutamate accumulation was measured by HPLC. With [K+]e elevations to 60 m M , medium glutamate concentrations did not increase during incubation periods of 5–120 min. By contrast, 45 min of combined inhibition of glycolytic and oxidative ATP production increased medium glutamate concentrations 50–100-fold. Similar results were obtained in both rat and mouse cultures. Studies were also performed using astrocytes loaded with the nonmetabolized glutamate tracer d -aspartate, and parallel results were obtained; no increase in medium d -aspartate content resulted from [K+]e elevation up to 90 m M , whereas a large increase occurred during inhibition of energy metabolism. These results suggest that a net efflux of glutamate from intact astrocytes is not induced by any [K+]e attainable in brain.  相似文献   

17.
Abstract: In vivo ATP synthesis of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1, derived from endogenous respiration, was examined. ATP was synthesized at both pH 6.5 and 8.5 after the start of the endogenous respiration by supplying O2 to the anaerobic cell suspension. The ATP synthesis at pH 6.5, but not at pH 8.5, was completely inhibited by a H+ conductor, carbonylcyanide m -chlorophenylhydrazone (CCCP). The CCCP-resistant ATP synthesis at pH 8.5 was strongly inhibited by an inhibitor of the respiration-dependent primary Na+ pump, 2- n -heptyl-4-hydroxyquinoline N -oxide, and essentially required Na+. These results show that this bacterium synthesizes ATP at pH 6.5 by electrochemical potentials across the membrane Δ ∼ μ H+, whereas at pH 8.5 by Δ ∼ μ Na+ but not Δ ∼ μ H+.  相似文献   

18.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

19.
Abstract. The tonoplasts of internodal cells of Nitellopsis were removed by perfusing the vacuoles with media containing a Ca2 chelator, EGTA. Treatment of tonoplast-free cells with 100 mol m3 NaCl induces a large membrane depolarization, a drastic decrease in the membrane resistance and an increase in Na+ influx. These events are identical to those that occur in intact cells subjected to high NaCl. These responses to NaCl are prevented if 10 mol m3 Ca2+ is supplied together with 100 mol m3 NaCl. The protective effect of Ca2+ is evident only when the intracellular ATP concentration exceeds 0.1 mol m3 and does not occur full when the intracellular ATP is removed. AMP at concentrations greater than 0.5 mol m3 or 0.25 mol m3 AMPPNP can replace ATP. It is concluded that ATP does not act as an energy source nor as a substrate for protein phosphorylation. ATP seems to exert its effects as a coeffector with Ca2+ in regulating the Na+ permeability of the plasma membrane.  相似文献   

20.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号