首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus (EBV) from a nasopharyngeal carcinoma (NPC) hybrid cell line (NPC-KT) lacking defective viral DNA molecules superinfected Raji cells and induced EBV early antigens (EA), as did virus from P3HR-1 cells, which contained defective molecules. The EBV polypeptides induced by NPC-KT appeared to be identical to those induced by P3HR-1 virus. The ability of NPC-KT virus to induce EA was enhanced more than 10-fold by treatment of superinfected cells with dimethyl sulfoxide; however, dimethyl sulfoxide treatment did not enhance superinfection by P3HR-1 virus. After infection, DNA synthesis of both the superinfecting NPC-KT virus and the resident Raji viral genome was induced. In addition to amplified Raji EBV episomal DNA, a fused terminal fragment of NPC-KT viral DNA was detected. The detection of fused terminal DNA fragments suggests that the superinfecting virion DNA either circularizes or polymerizes after superinfection and is possibly amplified through circular or concatenated replicative intermediates.  相似文献   

2.
The effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus (EBV) DNA replication in the lymphoblastoid cell lines P3HR-1 and Raji is reported. Acyclovir at a concentration of 100 microM completely inhibited EBV DNA synthesis in superinfected Raji cells, but did not inhibit DNA synthesis in mock-infected cells. The number of EBV genome equivalents per cell in the virus-producing cell line P3HR-1 was significantly reduced by acyclovir, whereas the number of latent EBV genomes in Raji cells was not affected by the drug. In situ cytohybridization performed on untreated P3HR-1 cultures revealed the presence of relatively large amounts of EBV DNA in 15 to 20% of the cells. After a 100 microM drug treatment, no P3HR-1 cells contained levels of EBV DNA detectable by in situ cytohybridization. Indirect immunofluorescence studies demonstrated that during treatment with 100 microM acyclovir for 7 days, the percentage of P3HR-1 cells expressing viral capsid antigen was reduced. The EBV DNA remaining in P3HR-1 cells after treatment with 100 microM acyclovir (approximately 14 genomes per cell) had the properties of covalently closed circular DNA with an average molecular weight of 108 X 10(6), as determined by contour length measurements.  相似文献   

3.
The complexity and abundance of Epstein-Barr (EBV)-specific RNA in cell cultures restringently, abortively, and productively infected with EBV has been analyed by hybridization of the infected cell RNA with purified viral DNA. The data indicate the following. (i) Cultures containing productively infected cells contain viral RNA encoded by at least 45% of EBV DNA, and almost all of the species of viral RNA are present in the polyadenylated and polyribosomal RNA fractions. (ii) Restringently infected Namalwa and Raji cultures, which contain only intranuclear antigen, EBNA, and enhanced capacity for growth in vitro, contain EBV RNA encoded by at least 16 and 30% of the EBV DNA, respectively. The polyadenylated and polyribosomal RNA fractions of Raji and Namalwa cells are enriched for a class of EBV RNA encoded by approximately 5% of EBV DNA. The same EBV DNA sequences encode the polyadenylated and polyribosomal RNA of both Raji and Namalwa cells. (iii) After superinfection of Raji cultures with EBV (HR-1), the abortively infected cells contain RNA encoded by at least 41% of EBV DNA. The polyadenylated RNA of superinfected Raji cells is enriched for a class of EBV RNA encoded by approximately 20% of EBV HR-1 DNA. Summation hybridization experiments suggest that the polyadenylated RNA in superinfected Raji cells is encoded by the same DNA sequences as encode RNA present in Raji cells before superinfection, most of which is not polyadenylated. That the same EBV RNA sequences are present in the polyadenylated and polyribosomal fractions of two independently derived, restringently infected cell lines suggests that these RNAs may specify functions related to maintenance of the transformed state. The complexity of this class of RNA is adequate to specify a sequence of a least 5,000 amino acids. That only some RNA species are polyadenylated in restringent and abortive infection suggests that polyadenylation or whatever determines polyadenylation may play a role in the restricted expression of the EVB genome.  相似文献   

4.
The heterogeneity of Epstein-Barr virus (EBV) obtained from P3HR-1 cells has permitted derivation of a distinct subclone of P3HR-1 (L. Heston, M. Rabson, N. Brown, and G. Miller, Nature (London) 295:160-163, 1982). We have analyzed the biologic properties and genomic structure of this subclonal virus (clone 13) compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV proteins in Raji cells superinfected with virus derived from P3HR-1, clone 13, and B95-8 was analyzed both by fluorography of radiolabeled proteins and by immunoblotting. Highly concentrated preparations of clone 13 and B95-8 virus induced most of the spectrum of EBV proteins in Raji cells with the exception of the 145,000-, 140,000-, and 110,000-molecular-weight proteins, which were either undetectable or reduced. Moreover, both clone 13 and B95-8 viruses also induced the same patterns of early antigen diffuse components as the parental P3HR-1 virus did. However, only P3HR-1 virus could induce EBV DNA synthesis in superinfected Raji cells, as determined both by buoyant density centrifugation and by in situ cytohybridization with biotinylated recombinant EBV DNA probes. Defective heterogeneous molecules present in P3HR-1 virus have been implicated in early antigen induction after superinfection of Raji cells. Therefore, Southern blots of clone 13, P3HR-1, and B95-8 viruses were hybridized to recombinant EBV fragments representing the sequences contained within the defective molecules in P3HR-1. The parental P3HR-1 contained the previously described defective molecules. No evidence for defective molecules was found in clone 13 or B95-8 viruses. These data indicate that concentrated preparations of both clone 13 and B95-8 viruses can induce abortive infection in Raji cells, but while the defective molecules are not needed for induction of early antigen diffuse components, they may be required for the induction of viral DNA synthesis.  相似文献   

5.
Epstein-Barr virus (EBV), isolated from P3HR-1 cells, induces early antigen and viral capsid antigen upon infection of human B-lymphoblasts. The strong early antigen- and viral capsid antigen-inducing activity is only observed in P3HR-1 virus preparations harboring particles with defective genomes, suggesting that this biological activity is directly associated with the defective DNA population. After infection of EBV genome-carrying Raji or EBV genome-negative BJAB cells, defective genomes of P3HR-1 EBV DNA are replicated in excess, depending on the multiplicity of infecting EBV particles. Hybridization of the DNA from such infected cells with 32P-labeled EBV DNA after HindIII cleavage reveals six hypermolar fragments. Mapping of these fragments shows that they form one defective genome unit containing four nonadjacent regions (alpha, beta, gamma, and delta) of the nondefective P3HR-1 EBV DNA. Two of the segments (alpha and beta) contain ca. 17 and 13 megadaltons, respectively, from the terminal regions of the P3HR-1 genome, whereas the two smaller segments (gamma and delta) contain ca. 3.7 and 3.0 megadaltons, respectively, originating from the central portion of the genome. In the defective molecule, the regions gamma and delta are present in the opposite orientation compared with nondefective P3HR-1 EBV DNA. Tandem concatemers are formed by fusion of the alpha and beta regions. Our model suggests that tandem concatemers of three defective genome units can be packaged into virions in P3HR-1 cells.  相似文献   

6.
Human lymphoblastoid Raji cells, which do not produce virus, supported replication of Epstein-Barr virus (EBV) upon superinfection. Early antigen, viral capsid antigen, and virions were produced in Raji cells superinfected with EBV. Viral DNA replicated under complete inhibition of host cell DNA synthesis to the extent that a few micrograms of EBV DNA were recovered from 107 superinfected Raji cells, corresponding to 5,000 viral genomes/cell. Homology of the synthesized viral DNA to parental EBV DNA was more than 90%. Virions produced by the Raji cells contained a 55S DNA but failed to induce early antigen, viral capsid antigen, and viral DNA synthesis after a second superinfection of Raji cells.  相似文献   

7.
J E Shaw 《Journal of virology》1985,53(3):1012-1015
Selective DNA extraction and hybridization procedures were used to estimate the relative number of covalently closed circular viral genomes in cultures of Epstein-Barr virus (EBV)-transformed cells. In virus-producing P3HR-1 cultures that were exposed for 11 days to phosphonoacetic acid or to acyclovir, the content of covalently closed circular EBV DNA was reduced ca. 70% relative to a control culture without drug. The EBV plasmid content of Raji, a virus nonproducer cell line, was not reduced by exposure to these compounds. When P3HR-1 cultures were exposed to 12-O-tetradecanoylphorbol-13-acetate, the number of circular genomes per cell increased. These findings indicate that two enzyme activities synthesize circular EBV DNA and that the virus-associated DNA polymerase synthesizes most of the circular EBV DNA in a virus producer culture. It is suggested that the circular genomes synthesized by the viral enzyme are intermediates in the syntheses of linear virus DNA.  相似文献   

8.
The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is a potent inducer of Epstein-Barr virus (EBV) gene expression. The optimal conditions for maximum activation of latent EBV genomes by TPA were determined. Although TPA is able to induce replication of EBV genomes in P3HR-1 cells in all phases of growth, the greatest increase in viral genome copies per cell (15-fold above the control level) occurred in nonproliferating cells as opposed to cells growing exponentially (6-fold above the control level). The synthesis of chromosomal proteins in nonproliferating cells under the conditions that induce maximum activation of latent virus genomes by TPA was studied. Selective stimulation in chromosomal protein synthesis accompanied the increase in EBV genomes in P3HR-1 cells despite an overall reduction in total cellular protein synthesis. Comparison of the chromosomal proteins from TPA-induced P3HR-1 cells and from superinfected Raji cells revealed comigrating chromosomal polypeptides of 145K, 140K, 135K, 110K, 85K, and 55K that are presumably EBV associated. The selective stimulation of synthesis of these chromosomal proteins in TPA-treated P3HR-1 cells was closely associated with the activation of latent EBV genomes.  相似文献   

9.
The localization of Epstein-Barr virus (EBV) genomes in nuclei of the human lymphoblastoïd cell lines Raji, Jijoye, P3HR-1, Daudi and Ramos was investigated by in situ hybridization with biotinylated EBV DNA probes. We found that all sites of hybridization were associated with the chromosomes. Only some of these sites were present on both chromatids and these had a non-random distribution; these sites could represent EBV sequences integrated at specific points on the chromosomes. The total mean site number corresponded with the number of viral DNA copies estimated in the different cell lines by other techniques, but the copy number was highly variable from cell to cell in a given line.  相似文献   

10.
M Kawanishi 《Journal of virology》1993,67(12):7654-7658
Pulsed-field agarose gel electrophoresis showed that fragmentation of chromosomal DNA in Raji cells was induced by infection with the P3HR-1 strain of Epstein-Barr virus (EBV). S1 nuclease treatment of the agarose plugs containing cells suggested that the majority of DNA fragments did not contain single-strand gaps. Chromosomal DNA fragmentation was inhibited by cycloheximide, indicating that protein synthesis was required for DNA fragmentation. Phosphonoacetic acid, an inhibitor of EBV DNA polymerase, did not inhibit fragmentation of chromosomal DNA. These findings suggest that EBV-specific early proteins participate in fragmentation of chromosomal DNA. Chromosomal DNA of P3HR-1 cells was also fragmented by treatment with n-butyrate plus 12-O-tetradecanoylphorbol-13-acetate (TPA), which induced activation of latent EBV genome following viral replication. In addition, fragmentation of DNA preceded cell death during lytic infection. These results suggest that fragmentation of chromosomal DNA is generally induced during EBV replication and probably contributes to the cytopathic effect of EBV. The role of DNA fragmentation in death of infected cells is discussed in relation to apoptosis.  相似文献   

11.
We report the use of monoclonal antibody against the early antigen diffuse component (anti-EA-D) of Epstein-Barr virus (EBV) to analyze, both qualitatively and quantitatively, the expression of EA-D in various human lymphoblastoid cell lines activated by chemical inducers. The kinetics of synthesis of EA-D in P3HR-1, B95-8, and Ramos/AW cells were similar in that they all reached the peak of synthesis on day 5 after induction. Surprisingly, no expression of EA-D was found in induced BJAB/GC, an EBV-genome-containing cell line. EBV-negative cell lines, BJAB and Ramos, were negative for EA-D. Raji cells had no detectable EA-D but responded rapidly to induction, reaching a peak on day 3. Superinfection of Raji cells also resulted in marked induction of EA-D, which reached a plateau between 8 to 12 h postinfection. Western blotting coupled with the enzyme-linked immunosorbent assay was employed to identify polypeptides representing EA-D. A family of four polypeptides with molecular weights of 46,000 (46K protein), 49,000, 52,000, and 55,000 were identified to be reactive with monoclonal anti-EA-D antiserum. The pattern of EA-D polypeptides expressed in each cell line was different. Of particular interest was the expression of a large quantity of 46K protein both in induced Raji and P3HR-1 cells, but not in superinfected Raji cells. A 49K doublet was expressed in activated p3HR-1, B95-8, and Ramos/AW cells and in superinfected Raji cells. In addition, two distinct 52K and 55K polypeptides were expressed in induced Ramos/AW and superinfected Raji cells. However, none of these EA-D polypeptides was detectable in BJAB/GC, BJAB, Ramos, and mock-infected Raji cells. To approximate relative concentrations of EA-D in cell extracts, we employed the enzyme-linked immunosorbent assay and immunoblot dot methods by using one of the purified EA-D components to construct a standard curve. Depending upon the cell lines, it was estimated that ca. 1 to 3% (determined by the enzyme-linked immunosorbent assay) and 0.8 to 1.6% (determined by immunoblot dot) of total proteins from maximally induced cells were EA-D. These results suggest that differential expression of EA-D polypeptides could be of importance in the diagnosis of state of EBV infection.  相似文献   

12.
Interferon (IFN) production during natural killer (NK) cell assays with Raji, an EBV-carrying human lymphoma-derived cell line, was studied to determine whether IFN generated by effectors in vitro acted in target cell lysis. In 4-hr tests, Raji is insensitive to NK but becomes susceptible after superinfection with the P3HR-1 strain of EBV. IFN was not detectable by bioassay in supernatants from 4-hr assays, and the addition of antibody to IFN did not prevent the lysis of the superinfected Raji cells. In 18-hr tests the NK sensitivity of the superinfected Raji cells was markedly elevated, and a percent of the normal Raji cells was also killed. IFN alpha was found in supernatants from 18-hr tests. Antibody to IFN alpha markedly reduced the killing of superinfected Raji and slightly reduced cytotoxicity against control Raji in 18-hr tests. Taken together these results indicate that what is referred to as natural killing has IFN-related and IFN-nonrelated components.  相似文献   

13.
The effects of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), a new antiviral drug, and acyclovir (ACV) [9-(2-hydroxyethoxymethyl)guanine] on the replication of Epstein-Barr virus (EBV) were compared. Both drugs inhibited EBV DNA replication in P3HR-1 cells and superinfected Raji cells, but neither inhibited replication of the plasmid form of the EBV genome in latently infected Raji cells. However, DHPG had a more prolonged inhibitory effect than ACV. Although the effect of the drugs is prompt, the kinetics of inhibition of EBV replication indicated that a drug exposure of 14 days was needed to reduce the EBV genome copy number to the residual plasmid level (30 copies per cell). The inhibitory effect of ACV was readily reversed within 11 days after removal of the drug, in contrast to the more prolonged effect exerted by DHPG, which persisted for more than 21 days. The 50% inhibitory doses for cell growth of ACV and DHPG were estimated to be 250 and 200 microM, respectively. The viral 50% and 90% effective doses of inhibition were, respectively, 0.3 and 9 microM for ACV and 0.05 and 3 microM for DHPG. The therapeutic indices (50% inhibitory dose/50% effective dose) for ACV and DHPG were 833 and 4,000, respectively. Synthesis of EBV-associated polypeptides was also affected. In superinfected Raji cells, ACV (100 microM) and DHPG (30 microM) inhibited synthesis of polypeptides with molecular weights of 145,000 and 140,000; in addition, synthesis of polypeptides with molecular weights of 110,000 and 85,000 was markedly reduced by DHPG but not by ACV. However, after drug removal, the inhibitory effect of ACV on polypeptide synthesis was abolished in contrast to the more persistent effect of DHPG.  相似文献   

14.
9-([2-Hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine (BW B759U) is more potent and has a more prolonged inhibitory effect against Epstein-Barr virus (EBV) in vitro than does acyclovir (ACV). To assess the mechanism of this difference, we first compared the extent of phosphorylation of the two drugs in superinfected Raji cells. BW B759U is phosphorylated to levels 100-fold higher than is ACV. In addition, lower levels of phosphorylation of BW B759U and ACV were observed in uninfected Raji cells. Studies on the kinetics of formation of BW B759U triphosphate in superinfected Raji cells indicated that drug-phosphorylating activity was detected as early as 3 h after superinfection; this activity was steadily maintained for the first 7 h, followed by a burst of activity between 7 and 10 h and a doubling of phosphorylation between 10 and 25 h. During the superinfection cycle, the pool sizes of deoxyribonucleoside and ribonucleoside triphosphates were increased and reached their maxima at 10 h after infection. The maximal amount of triphosphorylated drug in a virus producer cell, P3HR-1 (LS), was obtained at 21 h after drug treatment. During long-term drug treatment, approximately 44 and 77% reduction in EBV genome copies per cell was observed on days 3 and 7, respectively. In a separate experiment, after treatment of P3HR-1 (LS) cells with BW B759U for 36 h, 4.2 pmol of BW B759U triphosphate per 10(6) cells was achieved. After the cells were released into drug-free medium, drug triphosphate was rapidly decreased to 11% of the original level in 1 day. Thereafter, the decrease was slow but steady, down to 0.22 pmol/10(6) P3HR-1 cells by 5 days. We calculated that 0.22 pmol of BW B759U triphosphate per 10(6) cells represents a cellular concentration of 0.22 microM, which is theoretically enough to inhibit EBV replication. This is based upon a comparison with the 50% effective dose of BW B759U (0.05 microM) for inhibition of genome replication and a Ki of 0.08 microM for BW B759U triphosphate inhibition of EBV DNA polymerase.  相似文献   

15.
Deleted, rearranged, heterogeneous (het) Epstein-Barr virus (EBV) DNA with the distinctive capability of disrupting EBV latency has been reported in biopsy samples of EBV-associated tumors whose onset in immunocompetent hosts is characteristically preceded by an antibody response indicative of EBV reactivation. Using the EBV P3HR-1 strain, we have reproduced in long-term culture of SVK epithelial cells an unusual pattern of infection previously observed in a subset of tumor biopsy samples: the persistence of het DNA in the absence of the parental helper virus. Fluorescence in situ hybridization (FISH) of infected cell subclones indicated the retention of het DNA in an integrated form. Incorporation of an intact het DNA molecule was confirmed by PCR, using primers that framed junctions of the four rearranged EBV DNA segments comprising P3HR-1-derived het DNA. Structural analysis of EBV terminal repeats revealed a banding pattern consistent with the integration of het DNA as a concatemer. Linkage of concatemeric monomers was defined at a nucleotide level, and that junctional sequence was detected in cell-free P3HR-1 virion DNA, confirming that subgenomic het DNA was packaged into infectious particles in a concatemeric configuration. Stable integration into cells having lost the standard viral genome allowed the unambiguous designation of het DNA as the source for viral gene products potentially encoded by both. Continuous expression of the latency-to-lytic switch protein Zta and detection of the BALF4 gene product gB, known to expand the target cell range of standard virus when incorporated at augmented levels into infectious progeny, add to a presumption of het DNA-enhanced pathogenesis in diseases of EBV reactivation.  相似文献   

16.
Cell extracts obtained from KB cells and 5 human lymphoblastoid cell lines including 2 from Burkitt's lymphoma (P3HR-1 and Raji), one each from nasopharyngeal carcinoma (no.223), acute lymphatic leukemia (MOLT-4) and a healthy person (NC-37) were tested for their inhibitory effects on the growth of herpes simplex virus type-1 (HSV-1) in green monkey kidney (GMK) cells by the plaque titration method. The relationship between the production of HSV-1 inhibitors and the degree of Epstein-Barr virus (EBV) genome repression in lymphoblastoid cells were also examined. Among the cell lines used P3HR-1 and no.223 cells produced a few EBV particles, Raji and NC-37 cells contained EBV genomes only, and MOLT-4 as well as KB cells were EBV genome-negative. The results revealed that P3HR-1 cell extract showed a tendency to inhibit HSV-1 growth in GMK cells but the other 4 lymphoblastoid cell lines and KB cells did not produce HSV-1 inhibitors, indicating that EBV genomes governing the formation of EBV structural antigens were not related to the production of HSV-1 growth inhibitors. The extracts from MOLT-4 cells, which are only a T lymphocyte cell line used in this study, stimulated HSV-1 growth in GMK cells significantly.  相似文献   

17.
The effect of 1-beta-D-arabinofuranosylthymine (ara-T) on cell growth and synthesis of Epstein-Barr virus (EBV) in human lymphoblastoid cell lines was determined. The growth of P3HR-1 cells was not inhibited by 1 microgram of the drug per ml; however, infectious virus production was strongly inhibited and was accompanied by decreased expression of early antigen (EA) and viral capsid antigen (VCA). The ability of 12-O-tetradecanoylphorbol-13-acetate or n-butyric acid to induce synthesis of VCA, but not EA, in P3HR-1 cells was inhibited by ara-T. Similarly, VCA synthesis but not EA synthesis was inhibited by ara-T in Jijoye cells superinfected with the P3HR-1 strain of EBV. The results suggest that ara-T has a specific inhibitory action against EBV replication.  相似文献   

18.
The extent of phosphorylation of 9-(2-hydroxyethoxymethyl)guanine (acyclovir [ACV]) in fresh peripheral leukocytes, in Epstein-Barr virus (EBV)-infected lymphoblastoid cell lines, and in herpes simplex virus type 1-infected lymphoblastoid (P3HR-1) and monkey kidney (Vero) cells was determined by high-pressure liquid chromatography, Mono-, di-, and triphosphorylated derivatives of [8-14C]ACV were detected at low levels at various times after superinfection of Raji cells with EBV. The extent of phosphorylation appeared to be related to the concentration of ACV in the medium. Small amounts of ACV mono-, di-, and triphosphates were formed in fresh peripheral leukocyte preparations from EBV- seropositive and -seronegative donors. Comparable ACV monophosphate levels were detected in EBV-negative BJAB and the EBV-positive BJAB/GC cell lines; however, no di- or triphosphate derivatives were detected. Comparable ACV-monophosphate levels were detected in both P3HR-1 and HSV-infected P3HR-1 cell lines; however, larger amounts of ACV di- and triphosphorylated derivatives were detected in the HSV-infected P3HR-1 cells. ACV was converted to the triphosphate to a greater extent in HSV-infected Vero cells than in mock-infected Vero cells or in HSV-infected P3HR-1 cells. ACV or its phosphorylated derivatives were converted to guanine nucleotides to a greater extent in lymphoblastoid cells than in fibroblasts (Vero). In conclusion, neither the productive replication of EBV nor the presence of latent viral DNA is required for ACV monophosphate formation in B lymphoblastoid cells. ACV triphosphate, however, was detected only in cells infected productively with EBV.  相似文献   

19.
Replicating Epstein-Barr virus (EBV) DNA molecules isolated from superinfected Raji cells were shown to consist of 80S to 65S and 58S (mature) molecules Pulse-chase experiments showed that radioactive label of DNAS molecules with the larger sedimentation coefficients was partially chased into 58S labeled forms. Formation of large concatemers of viral DNA could not be detected at any time after superinfection. The continuous presence of the 65S viral DNA intermediate throughout the replicative cycle combined with the observed inhibition of EBV DNA synthesis by addition of nontoxic levels of ethidium bromide to the superinfected cell culture led us to propose that EBV replication proceeds via a relaxed circular DNA intermediate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号