首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel DNA polymerase induced by Bacillus subtilis phage phi 29.   总被引:2,自引:2,他引:2       下载免费PDF全文
K Watabe  J Ito 《Nucleic acids research》1983,11(23):8333-8342
A novel DNA polymerase induced by Bacillus subtilis bacteriophage phi 29 has been identified. This polymerase can be separated from host DNA polymerase, by fractionation of extracts prepared from phage infected cells, using phosphocellulose chromatography. The isolated polymerase prefers poly(dA)oligo(dT) as template. The DNA polymerase isolated from the cells infected with a gene 2 temperature sensitive mutant (ts2) showed greater heat-lability than that induced by wild type phi 29. The ts2 DNA polymerase was also thermolabile for its activity in the formation of a covalent complex between phi 29 terminal protein and dAMP, the initiation step of phi 29 DNA replication. These findings indicate that gene 2 is the structural gene for a phi 29 DNA polymerase required for the complex formation step of DNA initiation.  相似文献   

2.
The results presented in this paper indicate that the phi 29 DNA polymerase is the only enzyme required for efficient synthesis of full length phi 29 DNA with the phi 29 terminal protein, the initiation primer, as the only additional protein requirement. Analysis of phi 29 DNA polymerase activity in various in vitro DNA replication systems indicates that two main reasons are responsible for the efficiency of this minimal system: 1) the phi 29 DNA polymerase is highly processive in the absence of any accessory protein; 2) the polymerase itself is able to produce strand displacement coupled to the polymerization process. Using primed M13 DNA as template, the phi 29 DNA polymerase is able to synthesize DNA chains greater than 70 kilobase pairs. Furthermore, conditions that increase the stability of secondary structure in the template do not affect the processivity and strand displacement ability of the enzyme. Thus, the catalytic properties of the phi 29 DNA polymerase are appropriate for a phi 29 DNA replication mechanism involving two replication origins, strand displacement and continuous synthesis of both strands. The enzymology of phi 29 DNA replication would support a symmetrical model of DNA replication.  相似文献   

3.
In this paper, we show that the phi 29 DNA polymerase, in the absence of DNA, is able to catalyze the formation of a covalent complex between the phi 29 terminal protein (TP) and 5'-dAMP. Like the reaction in the presence of phi 29 DNA, TP.dAMP complex formation is strongly dependent on activating Mn2+ ions and on the efficient formation of a TP/DNA polymerase heterodimer. The nature of the TP-dAMP linkage was shown to be identical (a O-5'-deoxyadenylyl-L-serine bond) to that found covalently linking TP to the DNA of bacteriophage phi 29, indicating that this DNA-independent reaction actually mimics that occurring as the initiation step of phi 29 DNA replication. Furthermore, as in normal TP-primed initiation on the phi 29 DNA template, this novel reaction showed the same specificity for TP Ser232 as the OH donor and the involvement of the YCDTD amino acid motif, highly conserved in alpha-like DNA polymerases. However, unlike the reaction in the presence of phi 29 DNA, the DNA-independent deoxynucleotidylation of TP by the phi 29 DNA polymerase did not show dATP specificity, being possible to obtain any of the four TP.dNMP complexes with a similar yield. This lack of specificity together with the poor efficiency of this reaction at low deoxynucleoside triphosphate (dNTP) concentration reflect a weak, but similar stability of the four dNTPs at the phi 29 DNA polymerase dNTP-binding site. Thus, the presence of a director DNA would mainly contribute to stabilizing a complementary nucleotide, giving base specificity to the protein-primed initiation reaction. According to all these data, the novel DNA polymerase reaction described in this paper could be considered as a "non-DNA-instructed" protein-primed deoxynucleotidylation.  相似文献   

4.
5.
6.
Unusual base sequence arrangement in phage phi 29 DNA.   总被引:9,自引:0,他引:9  
J Ito  R J Roberts 《Gene》1979,5(1):1-7
Susceptibility of Bacillus subtilis phage phi 29 DNA to 34 different restriction endoculceases was determined. Three enzymes, BglI, XbaI and BstEII, were found to cleave phi 29 DNA only once at specific sites. The sites of these single cleavages have been mapped. Thirteen enzymes did not cut phi 29 DNA. phi 29 HindIII DNA fragments inserted into pBR313 plasmid and propagated in Escherichia coli, were resistant to these restriction endonucleases. This result suggests that the insusceptibility is due to the absence of the nucleotide sequences on phi 29 recognized by the enzymes, and not to the presence of modified nucleotides.  相似文献   

7.
TheBacillus subtilis phage ?29 DNA polymerase, involved in protein-primed viral DNA replication, contains several amino acid consensus sequences common to other eukaryotic-type DNA polymerases. Using site-directed mutagenesis, we have studied the functional significance of a C-terminal conserved region, represented by the Lys-X-Tyr (“K-Y”) motif. Single point mutants have been constructed and the corresponding proteins have been overproduced and characterized. Measurements of the activity of the mutant proteins indicated that the invariant Lys and Tyr residues play a critical role in DNA polymerization. Interestingly, substitution of the invariant Lys either by Arg or Thr, produced enzymes with an increased or a largely reduced, respectively, capability to use a protein as primer, an intrinsic property of TP-priming DNA polymerases. On the other hand, the viral protein p6, which stimulates initiation of ?29 DNA replication by formation of a nucleoprotein complex at both DNA replication origins, increased (about 5-fold) the insertion fidelity of ?29 DNA polymerase during the formation of the TP-dAMP initiation complex. We propose a model in which the special strategy to maintain the integrity of the ?29 DNA ends, by means of a “sliding-back” mechanism, could also contribute to increase the fidelity of ?29 DNA replication.  相似文献   

8.
Purified protein p2 of phage phi 29, characterized as a specific DNA polymerase involved in the initiation and elongation of phi 29 DNA replication, contains a 3'----5' exonuclease active on single-stranded DNA, but not on double-stranded DNA. No 5'----3' exonuclease activity was found. The 3'----5' exonuclease activity was shown to be associated with the DNA polymerase since 1) the two activities were heat-inactivated with identical kinetics and 2) both activities, present in purified protein p2, cosedimented in a glycerol gradient.  相似文献   

9.
A Zaballos  M Salas 《Nucleic acids research》1989,17(24):10353-10366
Deletion mutants at the amino- and carboxyl-ends of the phi 29 terminal protein, as well as internal deletion and substitution mutants, whose ability to prime the initiation of phi 29 DNA replication was affected to different extent, have been assayed for their capacity to interact with DNA or with the phi 29 DNA polymerase. One DNA binding domain at the amino end of the terminal protein has been mapped. Two regions involved in the binding to the DNA polymerase, an internal region near the amino-terminus and a carboxyl-terminal one, have been also identified. Interaction with both DNA and phi 29 DNA polymerase are required to led to the formation of terminal protein-dAMP initiation complex to start phi 29 DNA replication.  相似文献   

10.
By using a modification of the BAC spreading method for mounting the DNA for electron microscopy, partial denaturation maps of protein-free phi 29 DNA and of phi 29 DNA containing protein p3 were obtained. In phi 29 p3-DNA1 the protein does not seem to influence the melting of the ends of the molecules. The comparison of the partial denaturation map and the B. subtilis RNA polymerase binding sites indicates that five of the seven early promoters (A1, A2, A3, B2 and C2) are located in A-T rich DNA regions whereas the other two early promoters (B1 and C1) are located in less A-T rich sites.  相似文献   

11.
Structure and assembly of phage phi29.   总被引:1,自引:0,他引:1  
Bacteriophage phi29 is a small, morphologically complex, virus with a DNA of molecular mass 12 X 10(6). The most likely structure of the head of phi29 consists of two fivefold symmetric end-caps based on T = 1 icosahedral symmetry, separated by an equatorial row of 5 hexamers. The eighteen genes identified in phi29 genome have been mapped and, in some cases, the gene products have been identified. Five linked genes, four coding for structural proteins (G, A, E, H) and one coding for a non-structural protein (J), are essential to determine the normal shape of the capsid. Protein pJ may be a scaffolding protein. An account of the effects of mutations in phi29 genes is given.  相似文献   

12.
Bourassa N  Major F 《Biochimie》2002,84(9):945-951
RNA is an important component of many biological processes, including DNA encapsidation of bacteriophage phi29 of Bacillus subtilis. Interestingly, the prohead RNA is involved in this encapsidation, and was found in monomer, dimer, pentamer and hexamer conformations. This article presents and debates current knowledge about the prohead RNA structures, mechanisms, and roles in DNA encapsidation. A new dimer structure is presented, and its specific role in DNA encapsidation is discussed.  相似文献   

13.
The bacteriophage phi 29 DNA polymerase, involved both in the protein-primed initiation and elongation steps of the viral DNA replication, displays a very processive 3',5'-exonuclease activity acting preferentially on single-stranded DNA. This exonucleolytic activity showed a marked preference for excision of a mismatched versus a correctly paired 3' terminus. These characteristics enable the phi 29 DNA polymerase to act as a proofreading enzyme. A comparative analysis of the wild-type phi 29 DNA polymerase and a mutant lacking 3',5'-exonuclease activity indicated that a productive coupling between the exonuclease and polymerase activities is necessary to prevent fixation of polymerization errors. Based on these data, the phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication, appears to share the same mechanism for the editing function as that first proposed for T4 DNA polymerase and Escherichia coli DNA polymerase I on the basis of functional and structural studies.  相似文献   

14.
A Zaballos  R P Mellado  M Salas 《Gene》1988,63(1):113-121
Series of deletions at the amino end of protein p3, the phage phi 29 DNA terminal protein (TP), have been constructed and characterized. Measurements of the activity of the deletion mutants in the formation of the protein p3-dAMP initiation complex in vitro indicate the dispensability of the first 13 amino acids (aa) of the protein. The activity of protein p3 decreased considerably when 17 or more aa were deleted. The results on the in vitro phi 29 DNA replication primed by the p3 deletion mutants correlated very well with those obtained in the formation of the TP-dAMP initiation complex.  相似文献   

15.
To initiate ϕ29 DNA replication, the DNA polymerase has to form a complex with the homologous primer terminal protein (TP) that further recognizes the replication origins of the homologous TP-DNA placed at both ends of the linear genome. By means of chimerical proteins, constructed by swapping the priming domain of the related ϕ29 and GA-1 TPs, we show that DNA polymerase can form catalytically active heterodimers exclusively with that chimerical TP containing the N-terminal part of the homologous TP, suggesting that the interaction between the polymerase TPR-1 subdomain and the TP N-terminal part is the one mainly responsible for the specificity between both proteins. We also show that the TP N-terminal part assists the proper binding of the priming domain at the polymerase active site. Additionally, a chimerical ϕ29 DNA polymerase containing the GA-1 TPR-1 subdomain could use GA-1 TP, but only in the presence of ϕ29 TP-DNA as template, indicating that parental TP recognition is mainly accomplished by the DNA polymerase. The sequential events occurring during initiation of bacteriophage protein-primed DNA replication are proposed.  相似文献   

16.
17.
A Zaballos  M Salas  R P Mellado 《Gene》1986,43(1-2):103-110
Series of deletions at the C end of p3, the phage phi 29 DNA terminal protein (TP), have been constructed and characterized. Measurements of the activity of those deletion mutants in the formation of the p3-dAMP initiation complex in vitro indicate the need of an intact C-end for the normal TP primer function in DNA replication. It appears that the region at the C-end between aa 240 and 262 of p3, or part of it, might be essential for the normal TP function.  相似文献   

18.
The phi 29 DNA polymerase, an alpha-like DNA polymerase, shows an inorganic pyrophosphate-dependent degradative activity with similar requirements to the corresponding one of Escherichia coli DNA polymerase I: (a) it requires a high concentration of inorganic pyrophosphate and is reversed by polymerization; (b) like DNA polymerization, it needs a duplex DNA with protruding 5' single-strand; (c) it acts in the 3' to 5' direction releasing free dNTPs, thus, it can be considered as the reversal of polymerization; (d) although a correctly base-paired 3' primer terminus is the preferred substrate, the pyrophosphorolytic activity is able to remove mismatched 3' ends. In agreement with the structural and functional model previously proposed for the phi 29 DNA polymerase, the analysis of point mutations has revealed that the pyrophosphorolytic activity, like the polymerization activity, is located at the C-terminal portion of the molecule, involving the amino acid motif YCDTD, highly conserved in alpha-like DNA polymerases. Furthermore, the analysis of phi 29 DNA polymerase mutants indicates that pyrophosphorolysis, like DNA polymerization, also requires an efficient translocation of the enzyme along the template.  相似文献   

19.
20.
Prokaryotic DNA replication is compartmentalized at the cellular membrane. The Bacillus subtilis phage varphi29-encoded membrane protein p16.7 is one of the few proteins known to be involved in the organization of prokaryotic membrane-associated DNA replication. The functional DNA binding domain of p16.7 is constituted by its C-terminal half, p16.7C, which forms high affinity dimers in solution and which can form higher order oligomers. Recently, the solution and crystal structures of p16.7C and the crystal structure of the p16.7C-DNA complex have been solved. Here, we have studied the p16.7C dimerization process and the structural and functional roles of p16.7 residues Trp-116 and Asn-120 and its last nine C-terminal amino acids, which form an extended tail. The results obtained show that transition of folded dimers into unfolded monomers occurs without stable intermediates and that both Trp-116 and the C-terminal tail are important for dimerization and functionality of p16.7C. Residue Trp-116 is involved in formation of a novel aromatic cage dimerization motif, which we call "Pro cage." Finally, whereas residue Asn-120 plays a minor role in p16.7C dimerization, we show that it is critical for both oligomerization and DNA binding, providing further evidence that DNA binding and oligomerization of p16.7C are coupled processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号