首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated mesophyll protoplasts, and protoplast extracts containing intact chloroplasts, from the C4 species Digitaria sanguinalis have been used to study Compartmentation and export of C4 acids, using different C3 precursors as substrate for 14CO2 fixation. Mg2+ was necessary for maximum 14CO2 fixation rates with both protoplasts and protoplast extracts, whereas Mg2+ was inhibitory for oxaloacetate and phosphoglycerate reduction. This inhibition could be overcome by preincubating the materials in the light with excess of EDTA before addition of Mg2+. Under these conditions pyruvate as substrate for 14CO2 fixation induced mainly malate formation, whereas phosphoglycerate as substrate induced oxaloacetate formation, indicating competition for available NADPH between oxaloacetate and phosphoglycerate reduction. Oxaloacetate could be exported from the protoplasts at rates comparable to the rates of 14CO2 fixation in intact leaves (200 μmol/mg Chl × h). This product probably passed the plasma membrane by simple diffusion, whereas the export of malate and aspartate seemed to be regulated, with the size of the intraprotoplast pool being relatively independent of the export rate. It is concluded that transport via the plasma membrane-cell wall path may play a role in metabolite flow during photosynthesis in C4 plants.  相似文献   

2.
R. A. Kennedy  W. M. Laetsch 《Planta》1973,115(2):113-124
Summary The photosynthetic products of Portulaca oleracea differ greatly depending on leaf age and length of exposure to 14CO2. Mature leaves of P. oleracea fix 14CO2 primarily into organic and amino acids during a 10-s exposure period. Less than 2% of the 14CO2 fixed appears in phosphorylated compounds. In contrast, incorporation into amino acids can account for over 60% of the total 14CO2 fixed by young leaves in an equal time period, and incorporation into alanine alone can account for up to one half of this amount. Senescent leaves display a quantitative shift of primary products toward phosphorylated compounds with a concomitant reduction of the label residing in malate and asparate. About 8 times more phosphoglyceric acid is produced in senescent leaves than in mature leaves. The aspartate/ malate ratio is not constant and depends on the length of time the leaves are exposed to 14CO2 and the age of the leaves under study. It appears as if the stage of leaf development is one of the most important factors determining the operation of a particular enzyme system in C4 plants.  相似文献   

3.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

4.
Characteristics of C4 photosynthesis were examined in young, mid-age, and mature leaves of Flaveria trinervia (an NADP-malic enzyme-type C4 dicot). The turnover of [4-14C] (malate plus aspartate) following a pulse with 14CO2 was similar in leaves of different ages (apparent half-time of 18-25 seconds). However, the rate of 14CO2 incorporation in mid-age leaves was about 1.5-fold higher than in young leaves, and about 2.5-fold higher than in mature leaves. The rate of 14CO2 fixation was proportional to the total active pool of malate plus aspartate but was not correlated with the total photosynthetically derived inorganic carbon pool. The leaf's ability to concentrate inorganic carbon photosynthetically declined during leaf expansion, from 29 down to 7 nanomoles per milligram chlorophyll. Similarly, the active aspartate pool also declined during leaf expansion, from about 123 down to 20 nanomoles per milligram chlorophyll. Enhanced metabolism of aspartate to CO2 and pyruvate in young leaves is suggested to facilitate the maintenance of high CO2 levels in bundle sheath cells which are thought to have a higher conductance to CO2.  相似文献   

5.
The use of mesophyll protoplast extracts from various C4 species has provided an effective method for studying light-and substrate-dependent formation of oxaloacetate, malate, and asparate at rates equivalent to whole leaf C4 photosynthesis. Conditions regulating the formation of the C4 acids were studied with protoplast extracts from Digitaria sanguinalis, an NADP-malic enzyme C4 species, Eleusineindica, an NAD-malic enzyme C4 species, and Urochloa panicoides, a phosphoenolpyruvate (PEP) carboxykinase C4 species. Light-dependent induction of CO2 fixation by the mesophyll extracts of all three species was relatively low without addition of exogenous substrates. Pyruvate, alanine and α-ketoglutarate, or 3-phosphoglycerate induced high rates of CO2 fixation in the mesophyll extracts with oxaloacetate, malate, and aspartate being the primary products. In all three species, it appears that pyruvate, alanine, or 3-phosphoglycerate may serve as effective precursors to the formation of PEP for carboxylation through PEP-carboxylase in C4 mesophyll cells. Induction by pyruvate or alanine and α-ketoglutarate was light-dependent, whereas 3-phosphoglycerate-induced CO2 fixation was not.  相似文献   

6.
Metabolism of alpha-Ketoglutarate by Roots of Woody Plants   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake and metabolism of α-ketoglutarate-5-14C by peach, apple, and privet root tissues were studied over various time intervals. As much as 80% of the absorbed 14C appeared as 14CO2 in 320 minutes in peach roots. Apple and privet roots were less effective in this conversion with the bulk of the 14C found in the organic acid fraction. This indicates differences in organic acid metabolism among species of woody plants.

The 14C accumulated in malate earlier and in larger quantities than in citrate. Both glutamate and aspartate were labeled in 10 minutes and glutamate was labeled as early as 3 minutes. The labeling pattern does not clearly distinguish between the synthesis of glutamate by glutamic dehydrogenase or by transamination with oxaloacetate.

The rapid metabolism of α-ketoglutarate to glutamate by the 3 species studied indicates the presence of enzyme systems important in amino acid synthesis in the roots of woody plants.

  相似文献   

7.
Aphanocapsa 6308 metabolizes both NaHCO3 and Na2CO3. The short term incorporation (5-s) metabolic pattern and the patterns of incorporation of bicarbonate for exponential versus stationary phase cultures differ, however. Cells were equilibrated for 10 min in air and distilled water prior to injection of either NaH14CO3 at pH 8.0, or Na2 14CO3 at pH 11.0. Hot ethanol extracts were analyzed via paper chromatography and autoradiography for products of CO2 fixation. At 5 s, malate (51.5%) predominates slightly as a primary bicarbonate fixation product over 3-phosphoglycerate (40.3%); 3-phosphoglycerate is the primary product of carbonate fixation. At 60 s, the carbonate and bicarbonate labelling patterns are similar. Cells in stationary phase fix in 5 s a greater proportion of bicarbonate into malate (36% vs. 14% for 3-phosphoglycerate) than do cells in exponential growth. Likewise, 60 s incorporations show a large amount of bicarbonate fixed into aspartate (30.9%) in stationary phase cells over that of exponential phase (11.6%). These data suggest an operative C4 pathway for purposes not related to carbohydrate synthesis but rather as compensation for the incomplete tricarboxylic acid cycle in cyanobacteria. The enhancement of both aspartate fixation and CO2 fixation into citrulline in stationary phase correlates with an increase in cyanophycin granule production which requires both aspartate and arginine.Nonstandard Abbreviations 3-PGA 3-phosphoglyceric acid - TCA tricarboxylic acid  相似文献   

8.
Abstract The pattern of photosynthetic carbon fixation by leaves of Amaranthus paniculatus L. (a C4 plant) and Oryza sativa L. (a C3 plant) varied with age. Younger leaves of A. paniculatus incorporated 14CO2 into malate and aspartate while senescent leaves fixed predominantly into phosphoglycerate (PGA) and sugar phosphates. Only developing leaves of O. sativa formed malate/aspartate whereas mature and senescent leaves produced PGA/sugar phosphates as the initial labelled products. Correspondingly the ratio of phosphoenolpyruvate/ribulose bisphosphate (RuBP) carboxylase activities was higher in younger leaves of A. paniculatus and developing leaves of O. sativa than in older leaves. However, pulse chase experiments revealed that the main donors of carbon to end products, irrespective of leaf stage, were C4 acids and PGA in A. paniculatus and O. sativa respectively. The results suggest that although an apparent change from initial β-carboxylation to RuBP carboxylation occurs during leaf ontogeny in both the plants, the overall leaf photosynthesis remains C4 or C3. The high rate of 14CO2 incorporation into PGA/sugar phosphates by senescent leaves of A. paniculatus is suggested to be partly due to the increased intercellular spaces in their mesophyll, allowing greater access of CO2 directly to RuBP carboxylase in the bundle sheath.  相似文献   

9.
In vitro studies of dark 14CO2 fixation with isolated cell aggregates of Kalanchoë fedtschenkoi showed that malate synthesized after 20 sec is predominantly (85 to 92%) labeled at carbon 4, while after 20 min only 65 to 69% of the radioactivity was located in this position. The intramolecular labeling pattern of malate could not be changed by supplementing the cells with carboxylation reaction substrates such as ribulose diphosphate or phosphoenolpyruvate. The kinetic decline of label at carbon 4 of malate occurs independently of CO2 fixation, since 4-14C-labeled aspartate fed to the cells gave rise to malate labeled 62% at carbon 4 after 20 min. Furthermore, the cells were capable of converting fed malate to fumarate. It is concluded that synthesis of malate during dark CO2 fixation is accomplished by a single carboxylation step via phosphoenolpyruvate carboxylase and labeling patterns observed in malate are a consequence of the action of fumarase.  相似文献   

10.
The C-4 pathway in Pennisetum purpureum   总被引:2,自引:2,他引:0  
J. Coombs  C. W. Baldry  J. E. Brown 《Planta》1973,110(2):121-129
Summary The anatomical structure of leaf tissue of P. purpureum, and the short term labelling pattern following exposure to 14CO2 in the lighht, have been investigated. Both the arrangement of photosynthetic tissue in two layers around the vascular tissue, and the early labelling of malate and aspartate, characteristic of C-4 plants were observed. The structure of the epidermis and the arrangement of stomata is such that CO2 must pass through non-chloroplast-containing tissue before reaching the chloroplasts. At 0.05% CO2 in air the rate of photosynthetic CO2 assimilation was about 70 moles/mg chl·h. This increased to over 700 moles/mg chl·h at saturating concentrations of CO2. At 0.05% CO2 negative slopes were obtained from percentage plots for malate, which was the major product. As the CO2 concentration was increased, sugar phosphates became the major product. At saturating concentrations of CO2, both malate and aspartate had positive initial slopes and a negative slope was observed for phosphoglyceric acid. These results are discussed in relation to the contribution of C-4 metabolism to photosynthesis in P. purpureum.  相似文献   

11.
Malate synthesis by dark carbon dioxide fixation in leaves   总被引:4,自引:4,他引:0       下载免费PDF全文
The rates of dark CO2 fixation and the label distribution in malate following dark 14CO2 fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark 14CO2 fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO2 at rates of 1.4, 3.4, 0.23, and 1.0 μmoles of CO2/mg of chlorophyll· hour, respectively. Net CO2 fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO2 for the duration of the 23-hour experiment.

A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the β-carboxyl (C4) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C4 as much as 15 to 20%.

The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO2 fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix 14CO2 more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls.

  相似文献   

12.
The kinetics of 14CO2 carboxylation and decarboxylation in corn root tips were determined to ascertain the sequence of product formation and subsequent utilization, and to obtain further evidence to predict the enzymes mediating the carboxylation and decarboxylations. The carboxylation data indicated that the first product was oxaloacetate followed by malate and aspartate. Malate was the first stable product which could be detected. Decarboxylation data indicated that a large fraction of the 14CO2 release and turnover of 14C was accountable for by a decrease in malate: however, essentially all labeled amino acids turned over rapidly and at a greater rate than organic acids. The data generally support the hypothesis that CO2 fixation in corn root tips is via P-enolpyruvate carboxylase and malic dehydrogenase and that subsequent malate metabolism is for the most part by direct decarboxylation, possibly by the malic enzyme.  相似文献   

13.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   

14.
Photosynthetic activities of bundle sheath cell strands isolated from several C4 pathway species were examined. These included species that decarboxylate C4 acids via either NADP-malic enzyme (Zea mays, NADP-malic enzyme-type), NAD-malic enzyme (Atriplex spongiosa and Panicum miliaceum, NAD-malic enzyme-type) or phosphoenolpyruvate carboxykinase (Chloris gayana and Panicum maximum, phosphoenolpyruvate carboxykinase-type). Preparations from each of these species fixed 14CO2 at rates ranging between 1.2 and 3.5 μmol min?1 mg?1 of chlorophyll, with more than 90% of the 14C being assimilated into Calvin cycle intermediates. With added HCO3? the rate of light-dependent O2 evolution ranged between 2 and 4 μmol min?1 mg?1 of chlorophyll for cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species but with Z. mays cells there was no O2 evolution detectable. Most of the 14CO2 fixed by Z. mays cells provided with H14CO3? plus ribose 5-phosphate accumulated in the C-1 of 3-phosphoglycerate. However, 3-phosphoglycerate reduction was increased several fold when malate was also provided. Cells from all species rapidly decarboxylated C4 acids under appropriate conditions, and the CO2 released from the C-4 carboxyl was reassimilated via the Calvin cycle. Malate decarboxylation by Z. mays cells was dependent upon light and an endogenous or exogenous source of 3-phosphoglycerate. Bundle sheath cells of NAD-malic enzyme-type species rapidly decarboxylated [14C]malate when aspartate and 2-oxoglutarate were also provided, and [14C]aspartate was decarboxylated at similar rates when 2-oxoglutarate was added. Cells from phosphoenolpyruvate carboxykinase-type species decarboxylated [14C]aspartate when 2-oxoglutarate was added and they also catalyzed a slower decarboxylation of malate. Cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species evolved O2 in the light when C4 acids were added. These results are discussed in relation to proposed mechanisms for photosynthetic metabolism in the bundle sheath cells of species utilizing C4 pathway photosynthesis.  相似文献   

15.
Desulfovibrio vulgaris (Marburg) was grown on hydrogen plus sulfate as sole energy source and acetate plus CO2 as the sole carbon sources. The incorporation of U-14C acetate into alanine, aspartate, glutamate, and ribose was studied. The labelling data show that alanine is synthesized from one acetate (C-2 + C-3) and one CO2 (C-1), aspartate from one acetate (C-2 + C-3) and two CO2 (C-1 + C-4), glutamate from two acetate (C-1–C-4) and one CO2 (C-5), and ribose from 1.8 acetate and 1.4 CO2. These findings indicate that in Desulfovibrio vulgaris (Marburg) pyruvate is formed via reductive carboxylation of acetyl-CoA, oxaloacetate via carboxylation of pyruvate or phosphoenol pyruvate, and -ketoglutarate from oxaloacetate plus acetyl-CoA via citrate and isocitrate. Since C-5 of glutamate is derived from CO2, citrate must have been formed via a (R)-citrate synthase rather than a(S)-citrate synthase. The synthesis of ribose from 1.8 mol of acetate and 1.4 mol of CO2 excludes the operation of the Calvin cycle in this chemolithotrophically growing bacterium.  相似文献   

16.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

17.
Phosphoenolpyruvate carboxylase activity in extracts of a wide range of thermogenic tissues of the Araceae was shown to be in the range 10–100 mol g-1 fresh weight min-1 (0.5–3.7 mol mg-1 protein min-1). Such high activities were not found in non-thermogenic tissues of the Araceae or in thermogenic tissues of Aristolochia brasiliensis Mart. and Zucc., Victoria amazonica Schomb. and Encephalartos barteri Carruth. During development and thermogenesis in the club of Arum maculatum L. the high activities of the carboxylase did not lead to any marked accumulation of citrate, isocitrate, 2-oxoglutarate, fumarate, malate and oxaloacetate. Clubs of Arum maculatum and of Arum italicum Miller readily fixed 14CO2 in the dark, mostly into aspartate, malate, alanine and glutamate. Pulse and chase experiments showed that most of the fixed carbon was very rapidly metabolized to CO2. The detailed distribution suggest that this occurred largely by decarboxylation of C-4 acids. It is suggested that thermogenic tissues of the Araceae are characterized by very high activities of phosphoenolpyruvate carboxylase, and that in vivo this leads to synthesis of C-4 acids which are promptly decarboxylated.  相似文献   

18.
The net carbon incorporation in maize (Zea mays) and tomato (Lycopersicum esculentum) leaves was mainly the result of the carboxylation of ribulose 1,5-diphosphate. In both of these organisms synthesis of glycerate 3-phosphate was studied during short chase experiments (2 or 3 seconds in 14CO2 then 8 to 27 seconds in unlabeled CO2). Changes in the radioactivity in the individual carbon atoms of glycerate 3-phosphate, malate, and aspartate are consistent with the formation, in both leaves, of 2 molecules of glycerate 3-phosphate for each CO2 molecule incorporated. The CO2, before reacting with ribulose 1,5-diphosphate, is first incorporated in an intracellular CO2 pool which has a different composition according to the species. This pool is constituted in tomato by volatile compounds (50 nanomoles per gram of fresh weight) more or less in equilibrium with atmospheric CO2. In maize the pool consists of carbon atoms 4 of malate and aspartate (for at least 80% of the pool) and volatile compounds which correspond, in all, to 540 nanomoles per gram of fresh weight where atmospheric CO2 enters through an irreversible reaction.  相似文献   

19.
The metabolism of fixed 14CO2 and the utilization of the C-4 carboxyl of malate and aspartate were examined during photosynthetic induction in Flaveria trinervia, a C4 dicot of the NADP-malic enzyme subgroup. Pulse/chase experiments indicated that both malate and aspartate appeared to function directly in the C4 cycle at all times during the induction period (examined after 30 seconds, 5 minutes and 20 minutes illumination). However, the rate of loss of 14C-label from the C-4 position of malate plus aspartate was relatively slow after 30 seconds of illumination, compared to treatments after 5 or 20 minutes of illumination. Similarly, the appearance of label in other photosynthetic products (e.g. 3-phosphoglycerate, sugar phosphates, alanine) during the chase periods was generally slower after only 30 seconds of leaf illumination, compared to that after 5 of 20 minutes illumination. This may be due to the lower rate of photosynthesis after 30 seconds illumination. The appearance of label in carbons 1→3 of each C4 acid during the chase periods was relatively slow after either 30 seconds or 5 minutes illumination, while there was a relatively rapid accumulation of label in carbons 1→3 of both C4 acids after 20 minutes illumination. Thus, while the turnover rate of the 14C-4 label in both C4 acids increased only during the first 5 minutes of the induction period, only later during induction is there an increased rate of appearance of label in other carbon atoms of the C4 acids. The implied source of 14C for labeling of the 1→3 positions of the C4 acids is an apparent carbon flux from 3-phosphoglycerate of the reductive pentose phosphate pathway to phosphoenolpyruvate of the C4 cycle.  相似文献   

20.
A photoautotrophic soybean suspension culture (SB-P) was used to study CO2 assimilation while exposed to elevated or ambient CO2 levels. These studies showed that under elevated CO2 (5% v/v) malate is the dominant fixation product, strongly suggesting that phosphoenolpyruvate carboxylase (PEPCase) is the primary enzyme involved in carbon fixation in these cells under their normal growth conditions. Citrate and [aspartate + glutamate] were also significant fixation products during fifteen minutes of exposure to 14CO2. During the ten minute unlabeled CO2 chase however, 14C-malate continued to increase while citrate and [aspartate + glutamate] declined. Fixation of 14CO2 under ambient CO2 levels (0.037%) showed a very different product pattern as 3-phosphoglycerate was very high in the first one to two minutes followed by increases in [serine + glycine] and [aspartate + glutamate]. Hexose phosphates were also quite high initially but then declined relatively rapidly. Thus, the carbon fixation pattern at ambient CO2 levels resembles somewhat that seen in C3 leaf cells while that seen at elevated CO2 levels more closely resembles that of a C4 plant. The initial fixation product of C3 plants, 3-PGA, was never detectable under high CO2 conditions. These data suggest that an in vitro photoautotrophic system would be suitable for studying carbon fixation physiology during photosynthetic and non-photosynthetic growth.Abbreviations SB-P photoautotrophic soybean cells - PEPCase phosphoenol-pyruvate carboxylase - RuBPCase ribulose bisphosphate carboxylase/oxygenase - 3-PGA 3-phosphoglycerate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号