首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The capsule of Bacteroides fragilis is unusual in that it consists of two distinct capsular polysaccharides. Using a combination of high-resolution NMR spectroscopy, theoretical calculations, and as few chemical procedures as required, the structure of both polysaccharide antigens (polysaccharides A and B) was elucidated. Using the above procedures, it was possible to obtain the complete structures using minimal quantities of polysaccharides A and B (8 and 5 mg, respectively). Only small amounts of each subjected to chemical analysis were not recoverable. Polysaccharide A is composed of the following repeating unit: [----3)alpha-D-AATp(1----4)[beta-D-Galf(1----3)]alpha-D- GalpNAc(1----3)beta-D-Galp(1----], where AAT is 2-acetamido-4-amino-2,4,6-trideoxygalactose. A pyruvate substituent having the R configuration spans O-4 and O-6 of the beta-D-galactopyranosyl residue. Polysaccharide B is composed of the following repeating unit: [----4)alpha-L-QuipNAc(1----3)beta-D-QuipNAc(1----4)[alpha-L - Fucp(1----2)beta-D-GalpA(1----3)beta-D-GlcpNAc(1----3)]alpha -D-Galp(1----]. A 2-aminoethylphosphonate substituent is situated on O-4 of the N-acetyl-beta-D-glucopyranosyl residue.  相似文献   

2.
Serologically active O-specific polysaccharides were obtained on mild acid hydrolysis of lipopolysaccharides from Pseudomonas cerasi 467 and Pseudomonas syringae pv. syringae strains 218 and P-55. On the basis of 1H- and 13C-NMR analysis, it was concluded that the P. cerasi polysaccharide has the following structure: ----3)-alpha-D-Rhap-(1----3)-alpha-D-Rhap-(1----2)-alpha-D-+ ++Rhap-(1---- which is identical to that of O-specific polysaccharide from P. syringae pv. morsprunorum C28 (Smith A. R. W. et al. Eur. J. Biochem., 1985, V. 149, No 1, p. 73-78). The polysaccharides from P. syringae pv. syringae strains possess the same backbone but differ by the presence of D-fucose as monosaccharide branches. Methylation and 1H- and 13C-NMR analysis revealed the following structure of these polysaccharides: (Formula: see text). The degree of substitution of the backbone trisaccharide units by the fucofuranose residues is about 35% for the strain 218 and about 85% for the strain P-55.  相似文献   

3.
Several polysaccharides have been isolated from the cell walls of Phytophthora parasitica, a phytopathogenic fungus of carnation. The crude polysaccharides were fractionated by successive chromatographies on DEAE-cellulose, Sephadex G-25, concanavalin-A-Sepharose and Sephadex G-200 columns. The neutral polysaccharides consist of a mixture of beta(1----3, 1----6)-D-glucans whose relative molecular masses varied from 9000 to about 200 000. All these polysaccharides have a main chain of beta(1----3)-linked D-glucose residues. They differ by the presence of 1----6 branched chains consisting of D-glucose and D-Glc-(1----3)-D-Glc, for the lowest molecular mass polysaccharides or D-Glc-(1----3)-D-Glc-(1---3)-D-Glc for the highest molecular mass polysaccharides.  相似文献   

4.
The "heptasaccharides" O-alpha-D-galactopyranosyl-(1----3)- O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----3)-D-ribit-5-yl sodium phosphate] (25) and O-alpha-D-galactopyranosyl- (1----3)-O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----4)-D-ribit-5-yl sodium phosphate] (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)- -alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)-D-RibOH-(5-P----]n; 6A X = 3, 6B X = 4), respectively, have been synthesized. 2,4-Di-O-acetyl- 3-O-[2,4,6-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranosyl trichloroacetimidate (13) was coupled with 5-O-allyloxycarbonyl-1,2,4-tri-O- benzyl-D-ribitol (10), using trimethylsilyl triflate as a promotor (----14), and deallyloxycarbonylation (----15) and conversion into the corresponding triethylammonium phosphonate then gave 16. Condensation of 16 with 4-methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]- alpha-L-rhamnopyranoside (22) followed by oxidation and deprotection afforded 25. 5-O-Allyl-1-O-allyloxycarbonyl-2,3-di-O-benzyl-D-ribitol (12) was coupled with 13, using trimethylsilyl triflate as a promoter, the resulting tetrasaccharide-alditol derivative 17 was deallyloxycarbonylated (----18), acetylated (----19), and deallylated (----20), and the product was converted into the triethylammonium phosphonate derivative 21. Condensation of 21 with 22 followed by oxidation and deprotection afforded 27.  相似文献   

5.
The carbohydrate specificity of mistletoe toxic lectin-I (ML-I) was studied by haemagglutination-inhibition assay. The results indicated that ML-I has a broad range of affinity for Gal alpha,beta linked sequences. The galabiose (E, Gal alpha 1----4Gal) sequence, a receptor of the uropathogenic E. coli ligand, was one of the best disaccharide inhibitors tested. The lectin also exhibits affinity for Lac(Gal beta 1----4Glc), T(Gal beta 1----3GalNAc), I/II(Gal beta 1----3/4GlcNAc) and B(Gal alpha 1----3Gal) sequences. Gal alpha 1----4Gal and Gal beta 1----4Glc are frequently occurring sequences of many glycosphingolipids located at the mammalian cell membranes, such as intestinal and red blood cell membranes, for ligand binding and toxin attachment. This finding provides important information concerning the possible mechanism of intoxication of cells by the mistletoe preparation.  相似文献   

6.
4-Methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranoside (22), a building block for the alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap fragment of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----X)-D- RibOH-(5-P----]n (6A, X = 3; 6B, X = 4) has been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside was coupled with 4-methoxybenzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside in ether, using methyl triflate as promoter. The resulting alpha-D-Glcp-(1----3)-alpha-L-Rhap derivative was deallylated with KOBut in N,N-dimethylformamide followed by 0.1M HCl in 9:1 acetone-water. The product was coupled with 3,4,6-tri-O-acetyl-2-O-allyl-alpha,beta-D-galactopyranosyl trichloroacetimidate in ether, using trimethylsilyl triflate, to yield 19. Deacetylation, benzylation, and deallylation then gave 22.  相似文献   

7.
O-alpha-d-Glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose (15), O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)-al pha, beta-L-rhamnopyranose (17), O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)- O-alpha-L-rhamnopyranosyl-(1----3)-D-ribitol (23), and O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl-(1----3)- O-alpha-L-rhamnopyranosyl-(1----4)-D-ribitol (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)- D-Rib-ol-(5-P----]n; 6A X = 3, 6B X = 4), have been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (3) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (4), and subsequent deallylation (----14) and debenzylation gave 15. Condensation of 14 with ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside (2) followed by debenzylation gave 17. Acetylation of 17 followed by removal of AcO-1, conversion into the imidate, coupling with 1,2,4,5-tetra-O-benzyl-D-ribitol (11), deacetylation, and debenzylation gave 23. Coupling of the imidate with 1-O-allyloxycarbonyl-2,3,5-tri-O-benzyl-D-ribitol (12) followed by deallyloxycarbonylation, deacetylation, and debenzylation yielded 27.  相似文献   

8.
The lipopolysaccharide (LPS) molecule is an important virulence determinant in Klebsiella pneumoniae. Studies on the serotype O1 LPS were initiated to determine the basis for antigenic heterogeneity previously observed in the O1 side chain polysaccharides and to resolve apparent ambiguities in the reported polysaccharide structure. Detailed chemical analysis, involving methylation and 1H- and 13C-nuclear magnetic resonance studies, demonstrated that the O-side chain polysaccharides of serotype O1 LPS contained a mixture of two structurally distinct D-galactan polymers. The repeating unit structures of these two polymers were identified as [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] (D-galactan I) and [----3)-alpha-D-Galp-(1----3)-beta-D-Galp-(1----] (D-Galactan II). D-Galactan I polysaccharides were heterogeneous in size and were detected throughout the sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) profile of O1 LPS. In contrast, D-galactan II was confined to the higher-molecular-weight region. The structures of the two D-galactans were not influenced by simultaneous synthesis of a capsular K antigen. Apparently, neither of the D-galactans constitutes a common antigen widespread in Klebsiella spp. as determined by immunochemical analysis. Examination of the LPSs in mutants indicated that expression of D-galactan I can occur independently of D-galactan II. Transconjugants of Escherichia coli K-12 strains carrying the his region of K. pneumoniae were constructed by chromosome mobilization with RP4::mini-Mu. In these transconjugants, the O antigen encoded by the his-linked rfb locus was determined to be D-galactan I, suggesting that genes involved in the expression of D-galactan II are not closely linked to the rfb cluster.  相似文献   

9.
In addition to four known glycosides, icariin, epimedin B, epimedosides A and E, two new glycosides of a flavonol with a gamma,gamma-dimethylallyl group were isolated from the underground parts of Vancouveria hexandra. The structures were determined to be des-O-methyl-anhydroicaritin 3-O-beta-D-xylopyranosyl(1----2)-alpha-L-rhamnopyranoside 7-O-beta-D-glucopyranosyl(1----2)-beta-D-glucopyranoside and anhydroicaritin 3-O-alpha-L-rhamnopyranosyl(1----3)-alpha-L-rhamnopyranoside 7-O-beta-D-glucopyranoside by means of spectral analysis.  相似文献   

10.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

11.
Lipopolysaccharides of Yersinia enterocolitica serovars O:5 and O:5,27 were shown to have a similar sugar composition, consisting of L-rhamnose, D-glucose, D-galactose, D- and L-glycero-D-manno-heptose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 3-deoxy-D-manno-octulosonate and D-threo-pent-2-ulose (D-xylulose). Partial hydrolysis of lipopolysaccharides with acetic acid produced rhamnans with the following repeating unit: ----3)-L-Rha rho(alpha 1----3)-L-Rha rho(alpha 1----3)-L-Rha rho(beta 1----. 13C-NMR and methylation studies of the lipopolysaccharides gave the following structure for the repeating unit of the two O-specific polysaccharides: ----3)-L-Rha rho(alpha 1----3)-L-Rha rho(alpha 1----3)-L-Rha rho(beta 1----. (formula; see text)  相似文献   

12.
Novikoff ascites tumor cells contain a UDP-GlcNAc:beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase B) that acts on galactosides and N-acetylgalactosaminides in which the accepting sugar is beta 1----3 substituted by a Gal or GlcNAc residue. Characterization of enzyme products by 1H-NMR and methylation analysis indicates that an R beta 1----3(GlcNAc beta 1----6)Gal- branching point is formed such as occurs in blood-group-I-active substances. The enzyme does not show an absolute divalent cation requirement and 20 mM EDTA is not inhibitory. The activity is strongly inhibited by Triton X-100 at concentrations of greater than or equal to 0.2%. Competition studies suggest that a single enzyme acts on Gal beta 1----3Gal beta 1----4Glc, GlcNAc beta 1----3Gal beta 1----4GlcNAc and GlcNAc beta 1----3GalNAc alpha-O-benzyl (Km values 0.71, 0.83 and 0.53 mM, respectively). Gal beta----3Gal beta 1----4Glc as an acceptor substrate for beta 6-GlcNAc-transferase B does not inhibit the incorporation of GlcNAc in beta 1----6 linkage to the terminal Gal residues of asialo-alpha 1-acid glycoprotein catalyzed by a beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase A) previously described in Novikoff ascites tumor cells [D. H. Van den Eijnden, H. Winterwerp, P. Smeeman & W.E.C.M. Schiphorst (1983) J. Biol. Chem. 258, 3435-3437]. Neither is Triton X-100 at a concentration of 0.8% inhibitory for the activity of beta 6-GlcNAc-transferase A. This activity is absent from hog gastric mucosa microsomes, which has been described to contain high levels of beta 6-GlcNAc-transferase B. [F. Piller, J. P. Cartron, A. Maranduba, A. Veyrières, Y. Leroy & B. Fournet (1984) J. Biol. Chem. 259, 13,385-13,390]. Our results show that Novikoff tumor cells contain two beta-galactoside beta 6-GlcNAc-transferases, which differ in acceptor specificity and tolerance towards Triton X-100. A role for these enzymes in the synthesis of branched polylactosaminoglycans and of O-linked oligosaccharide core structures having blood-group I activity is proposed.  相似文献   

13.
Treatment of cells and purified cell walls of the fission yeast Schizosaccharomyces pombe with primuline reveals the septum as a bright fluorescent band. When polysaccharides containing (1----3)-beta-, (1----6)-beta- or (1----3)-alpha-glucosidic linkages are treated with primuline, only those molecules containing chains of (1----3)-beta-glucosyl residues are stained. This implies that (1----3)-beta-glucan is present in the septum of Schiz. pombe as the main constituent.  相似文献   

14.
Treatment of blood group A active glycoprotein from human ovarian cyst fluid by one stage of Smith degradation followed by alkaline beta-elimination in the presence of NaB[ 3H4 ] (Carlson degradation) liberated tritiated oligosaccharide alditols. The carbohydrate mixture was fractionated by gel filtration, elution from charcoal, paper chromatography, and high pressure liquid chromatography. Structures were established based on sugar composition, periodate oxidation, methylation analysis, and analysis of oligosaccharide alditols as permethylated and N-trifluoroacetylated derivatives by gas-liquid chromatography-mass spectrometry. The following structures have been deduced: Gal beta 1----3GalNAc-ol, GlcNAc beta 1---- 6GalNAc -ol, Gal beta 1---- 3GlcNAc beta 1----6(3-deoxy)GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1---- 6GalNAc -ol, Gal beta 1----4GlcNAc beta 1---- 6GalNAc -ol, GlcNAc beta 1----3Gal beta 1----3GalNAc-ol, Gal beta 1----3[GlcNAc beta 1----6]GalNAc-ol, Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3GalNAc-ol, GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1---- 6GalNAc -ol, GlcNAc beta 1----3Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3Gal beta 1----3GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3[Gal beta 1----4GlcNAc beta 1----6]Gal beta 1----3GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol. The smaller structures represent pieces of the larger structures. Together they provide direct evidence for the core structure of the carbohydrate side chains in the blood group substances as proposed by K. O. Lloyd and E. A. Kabat [1968) Proc. Natl. Acad. Sci. U.S.A. 61, 1470-1477). Oligosaccharides previously isolated after Carlson degradation of intact human ovarian cyst fluid HLeb , Lea, and B substances and from human and horse B substances contained various alpha-linked L- fucopyranose and alpha-linked Gal substitutions on the composite structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
On mild acid degradation of the Pseudomonas cepacia strain IMV 4176 lipopolysaccharide, two polysaccharides were obtained, one of which is a homopolymer of N-acetyl-D-galactosamine and the other is composed of equal amounts of N-acetyl-D-galactosamine and D-ribose. Partial hydrolysis with aqueous oxalic acid caused depolymerization of the heteropolysaccharide, and the homopolysaccharide was isolated in the individual state. On the basis of methylation and 13C NMR analysis, it was concluded that both polysaccharides are built up of disaccharide repeating units having the following structures: ----4)-alpha-D-GalpNAc-(1----4)-beta-D-GalpNAc-(1---- and ----4)-alpha-D-GalpNAc-(1----2)-beta-D-Ribf-(1----. The heteropolysaccharide from P. cepacia strain 4176 is identical by the structure of the repeating unit to the O-specific polysaccharide of P. cepacia strain IMV 4202 (serotype 3), Pseudomonas aeruginosa O12 and Serratia marcescens O14.  相似文献   

16.
alpha-D-Man-(1----2)-alpha-D-Man-(1----3)-D-Gal, a structural fragment of the main chain of Salmonella serogroups C2 and C3 O-specific polysaccharides, and the isomer with the central residue beta have been synthesised, as have some oligosaccharides related to the structure of the O-specific polysaccharide of S. kentucky (serogroup C3), namely, alpha-D-Glc-(1----4)-D-Gal, alpha-D-Man-(1----3)-[alpha-D-Glc-(1----4)]-D-Gal, and alpha-D-Man-(1----2)-alpha-D-Man-(1----3)-[alpha-D-Glc-(1----4)]-D-Gal, and the isomers with the D-Glc unit beta. Each oligosaccharide was converted into the alpha-glycosyl phosphate.  相似文献   

17.
S K Nigam  X C Li  D Z Wang  G Misra  C R Yang 《Phytochemistry》1992,31(9):3169-3172
Two new triterpenoidal saponins, butyrosides A and B, were isolated from the seeds of Madhuca butyracea, along with two known saponins, Mi-saponin A and 16 alpha-hydroxy Mi-saponin A. On the basis of chemical and spectroscopic evidence, the structures of butyrosides A and B were established to be 3-O-beta-D-glucopyranosyl protobassic acid 28-O-beta-D-apiofuranosyl(1----3)-beta-D-xylopyranosyl (----4)-alpha-L-rhamnopyranosyl(1----2)-alpha-L-arabinopyranoside and 3-O-beta-D-glucopyranosyl 16 alpha-hydroxy protobassic acid 28-O-beta-D-apiofuranosyl(1----3)-beta-D-xylopyranosyl (1----4)-alpha-L-rhamnopyranosyl(1----2)-alpha-L-arabinopyranoside , respectively.  相似文献   

18.
Two new steroidal glycosides, agaveside A and B, isolated from the fruits of Agave cantala were characterized as 3 beta-O-[beta-D-xylopyranosyl-(1----2),beta-D-xylopyranosyl-(1----3), beta-D-glucopyranosyl-(1----3)-[beta-D-xylopyranosyl-(1----3)-beta-D- galactopyranosyl-(1----2)]-beta-D-glucopyranosyl]-(25R)-5 alpha-spirostane and 3 beta-O-[beta-D-xylopyranosyl-(1----2), beta-D-xylopyranosyl-(1----3)-beta-D-glucopyranosyl-(1----3)- [beta-D-galactopyranosyl-(1----2)]-beta-D-glucopyranosyl]-(25R)-5 alpha-spirostane. The structures were elucidated by a combination of 13CNMR spectroscopy, chemical degradation and fast atom bombardment mass spectrometry.  相似文献   

19.
Triterpene saponins from Verbascum songaricum.   总被引:1,自引:0,他引:1  
Songarosaponin A, B and C isolated from the aerial parts of Verbascum songaricum were shown to be 3-O-[alpha-L-rhamnopyranosyl-(1----4)-beta-D-glucopyranosyl-(1----3)]-[b eta-D-glucopyranosyl-(1----2)-beta-D-fucopyranosyl]-olea-11,13-die ne-3 beta-23,28-triol, 3-0-[alpha-L-rhamnopyranosyl-(1----4)-beta-D-glucopyranosyl-(1----3)]-[b eta-D-glucopyranosyl-(1----2)]-beta-D-fucopyranosyl]-olea-1 1-ene-3 beta-13,23,28-tetrol and 3-O-[beta-D-glucopyranosyl-(1----4)]-[beta-D-glucopyranosyl-(1----3)]-[b eta-D-glucopyranosyl-(1----2)]-beta-D-fucopyranosyl]-13 beta,28-epoxyolea-11-ene-3 beta,23-diol.  相似文献   

20.
E Berman 《Biochemistry》1984,23(16):3754-3759
The analysis of the carbon-13 chemical shift data of NeuAc alpha (2----3)Gal beta (1----4)Glc and NeuAc alpha (2----3)Gla beta-(1----4)GlcNAc and their respective NeuAc alpha (2----6) isomers established distinct and different conformations of the sialic acid residue, depending on the type of anomeric linkage [alpha-(2----3) vs. alpha (2----6)]. Interactions between the NeuAc residue and the Glc or GlcNAc residue are particularly strong in the case of the alpha (2----6) isomers. Similar effects are observed for the larger oligosaccharides [II3(NeuAc)2Lac and IV6NeuAcLcOse4] and even in intact glycoproteins and polysaccharides. It is proposed that the NeuAc alpha (2----3) isomers assume an extended conformation with the sialic residue at the end (terminal) of the oligosaccharide chain or branch. The NeuAc alpha (2----6) isomers are assumed to be folded back toward the inner core sugar residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号