首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

2.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

3.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

4.
We are employing recent advances in the understanding of the cell cycle to study the inverse relationship between proliferation and neuronal differentiation. Nerve growth factor and aphidicolin, an inhibitor of DNA polymerases, synergistically induce neuronal differentiation of SH-SY5Y neuroblastoma cells and the expression of p21WAF1, an inhibitor of cyclin-dependent kinases. The differentiated cells continue to express p21WAF1, even after removal of aphidicolin from the culture medium. The p21WAF1 protein coimmunoprecipitates with cyclin E and inhibits cyclin E-associated protein kinase activity. Each of three antisense oligonucleotides complementary to p21WAF1 mRNA partially blocks expression of p21WAF1 and promotes programmed cell death. These data indicate that p21WAF1 expression is required for survival of these differentiating neuroblastoma cells. Thus, the problem of neuronal differentiation can now be understood in the context of negative regulators of the cell cycle.  相似文献   

5.
Ichikawa A  Ando J  Suda K 《Human cell》2008,21(2):28-37
Treatment of exponentially growing MCF-7 human breast carcinoma cells with tamoxifen (TAM) inhibits cell growth in a dose-dependent manner. However, the molecular basis for the drug's activity and its relationship to the cell cycle have not yet been clearly established. In this study, we analyzed cell cycle-related proteins used for immunoblotting and flow cytometry in TAM-treated MCF-7 cells. In addition, the ratio of apoptosis in the cell was analyzed using labeling of DNA strand breaks (TdT assay). In flow-cytometric DNA distribution analysis, the S-phase fraction showed a marked decrease and a concomitant increase in G1- and G2-phase cells accompanying the inhibitory effect of TAM; these changes were time- and dose-dependent. Immunoblotting revealed that the levels of p53 and p21(WAF1/CIP1) in TAM-treated cells increased in a time- and dose-dependent manner, whereas those of p27(KIP1) and p16 slightly increased or remained unchanged. Furthermore, cyclin D3 and B showed sharp decreases, in contrast with p53 and p21(WAF1/CIP1) DNA-apoptosis dual analysis using flow cytometry revealed that the TAM-treated samples contained apoptotic cells, the majority of which were arrested in G1 or G2 and showed suppression of Bcl-2 protein. These results suggest that the tumorigenic effect of TAM on MCF-7 cells arises through antitumor effects that are due to the expression of cyclin-dependent kinase inhibitors, especially p21(WAF1/CIP1) and these are regulated by the decrease of wild-type p53. The proposed mechanism is similar to that underlying the cytotoxic effects of other agents and ionizing irradiation that cause DNA damage.  相似文献   

6.
Osteoclasts, bone-resorbing multinucleated cells, develop from monocyte-macrophage lineage cells in the presence of osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) and macrophage colony-stimulating factor (M-CSF). M-CSF-dependent bone marrow macrophages (M-BMMPhis) from mouse bone marrow cells have been shown to differentiate into osteoclast-like multinucleated cells (OCLs) in the presence of soluble ODF/RANKL (sODF/RANKL) and M-CSF within 3 days. In this study, we found that stimulation of M-BMMPhis with sODF/RANKL induced a transient expression of cyclin-dependent kinase inhibitors (CDK inhibitors) p21(WAF1/CIP1) and p27(KIP1) by 24 h. The CDK inhibitor proteins disappeared by 48 h. Tumor necrosis factor alpha (TNF-alpha), which is reported to stimulate OCL differentiation, stimulated p21(WAF1/CIP1) and p27(KIP1) expression in M-BMMPhis as well. However, M-CSF alone did not stimulate the expression of the two CDK inhibitors. To clarify the role of p21(WAF1/CIP1) and p27(KIP1) in osteoclastogenesis, accumulation of these CDK inhibitors was aborted by antisense oligonucleotides. Treatment with p21(WAF1/CIP1) antisense oligonucleotide alone, or p27(KIP1) antisense oligonucleotide alone, showed a limited inhibitory effect on OCL formation. However, treatment with a mixture of these two antisense oligonucleotides strongly inhibited OCL formation. These results suggest that a combined modulation of the CDK inhibitors p21(WAF1/CIP1) and p27(KIP1) may be involved in osteoclast differentiation induced by ODF/RANKL.  相似文献   

7.
The molecular mechanisms mediating death receptor-induced caspase-independent necrotic cell death are still largely unknown. We have previously reported that NIH3T3 cells are sensitized by caspase inhibition to death receptor-induced cytotoxicity leading to a necrosis-like cell death. In addition, we have identified an important role of cell cycle progression for this sensitization effect. Here, we report that tumor necrosis factor-induced necrotic death is preceded by an upregulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Increased expression of p21(WAF1/Cip1) occurs prior to cell death in the nucleus, where it binds to a cyclin-dependent kinase indicating its functionality. The use of specific pharmacological inhibitors revealed a partial involvement of p38 mitogen-activated protein kinase in the upregulation of p21(WAF1/Cip1). Inhibition of p21(WAF1/Cip1) upregulation prevents a previously observed delay of the cells in the G2/M phase of the cell cycle thereby augmenting, not inhibiting cell death.  相似文献   

8.
9.
10.
11.
The molecular and biochemical mode of cell death of dopaminergic neurons in Parkinson's disease (PD) is uncertain. In an attempt at further clarification we studied the effects of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on dopaminergic PC12 cells. In humans and nonhuman primates MPTP/MPP+ causes a syndrome closely resembling PD. MPP+ toxicity is thought to be mediated by the block of complex I of the mitochondrial electron transport chain. Treatment of undifferentiated PC12 cells with MPP+ primarily inhibited proliferation of PC12 cells and secondarily led to cell death after the depletion of all energy substrates by glycolysis. This cell death showed no morphological characteristics of apoptosis and was not blocked by treatment with caspase inhibitors. The inhibition of cell growth was not dependent on an inhibition of complex I activity since MPP+ also inhibited cell proliferation in SH-SY5Y cells lacking mitochondrial DNA and complex I activity (p0 cells). As shown by flow cytometric analysis, MPP+ induced a block in the G0/G1 to S phase transition that correlated with increased expression of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) and growth arrest. Since treatment with 1 microM MPP+ caused apoptotic cell death in p21(WAF1/Cip1)-deficient (p21(-/-)) but not in parental (p21(+/+)) mouse embryo fibroblasts, our data suggest that in an early phase MPP+-induced p21(WAF1/Cip1) expression leads to growth arrest and prevents apoptosis until energy depletion finally leads to a nonapoptotic cell death.  相似文献   

12.
Focus formation in human diploid fibroblasts (HDF cells) is known to require both the simian virus 40 (SV40) large-T and small-t antigens. Similarly, both SV40 proteins were required to stimulate confluent, density-arrested HDF cells to reenter the cell cycle. This study used defective recombinant adenoviruses to examine the roles of the individual SV40 proteins in altering specific steps in the cell cycle. Small-t antigen and, to a lesser extent, large-T antigen increased the level of the S phase cyclin cyclin A but without increasing the activity of associated cyclin kinases unless the two SV40 proteins were coexpressed. The absence of kinase activity reflected the presence in density-arrested cells of high levels of the cyclin-dependent kinase inhibitors p21(WAF1) and p27(KIP1). We report here that expression of SV40 large-T antigen reduced levels of p21(WAF1), while expression of small-t antigen was required to decrease p27(KIP1). The separate effects of large-T and small-t antigens on these two inhibitors may explain the joint requirement for the two proteins to drive cell cycle reentry of HDF cells and ultimately transform these cells.  相似文献   

13.
14.
15.
Bone morphogenetic proteins (BMPs) play an essential role in cell fate determination. In this study, we found that BMP2 treatment resulted in growth arrest and differentiation in human neuroblastoma-derived cell lines, SH-SY5Y and RTBM1. Within 30min of BMP2 exposure, phosphorylation of Smad1/5 was observed in these cell lines. In RTBM1 cells, BMP2-induced differentiation was accompanied by a significant decrease in the expression level of DAN, an antagonist of BMP in frog embryos. Immunoblot analysis revealed that BMP2 treatment caused a down-regulation of p53 family members and hence of cyclin-dependent kinase inhibitor p21(WAF1). We found a significant accumulation of p27(KIP1) in response to BMP2, whereas the expression level of Skp2, which is required for ubiquitin-dependent p27(KIP1) degradation, was decreased during this differentiation process. Our results suggest that p27(KIP1) contributes to the BMP-induced growth arrest and neuronal differentiation of neuroblastoma, and BMP treatment might provide a new therapeutic strategy.  相似文献   

16.
17.
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.  相似文献   

18.
探讨胃癌中p21~(WAF1)和p27~(KIP1)的表达及其临床意义,并分析幽门螺杆菌(Hp)感染和p21~(WAF1)、p27~(KIP1)表达的关系。采用免疫组化法检测了89例胃癌组织中p21~(WAF1)和p27~(KIP1)表达水平,并采用快速尿素酶试验和组织病理学检测两种方法检查这些胃癌病例的Hp感染情况。实验结果显示,胃癌组织p21~(WAF1)的表达水平在不同病例组织中有所差异。结合临床病理学指数分析显示,降低的p21~(WAF1)表达与较深的肿瘤侵袭密切相关(P<0.05)。免疫组织化学结果显示,p27~(KIP1)无论在细胞浆中还是细胞核内都有表达,p27~(KIP1)核表达水平与胃癌的组织病理学分型密切相关(P<0.05)。此外,还发现Hp阳性病例的p27~(KIP1)阳性表达率明显低于Hp阴性者(P<0.05),而p21~(WAF1)表达阳性率在Hp阳性和阴性胃癌病例中无显著差异(P>0.05)。结果提示,胃癌的进展与细胞周期调节蛋白p21~(WAF1)和p27~(KIP1)的表达下调有关,Hp感染的致癌过程中可能有p27~(KIP1)参与。  相似文献   

19.
ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21WAF1. ZNF313 ubiquitinates p21WAF1 and also destabilizes p27KIP1 and p57KIP2, three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16INK4A and p15INK4B. ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21WAF1-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21WAF1, whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号