首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao YF  Weng YM  Hu HY  Ku KL  Lin LL 《The protein journal》2006,25(6):431-441
A truncated Escherichia coli Novablue γ-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His6-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 °C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 °C and 9, respectively. The apparent K m and V max values for γ-glutamyl-p-nitroanilide as γ-glutamyl donor in the transpeptidation reaction were 37.9 μM and 53.7 × 10−3 mM min−1, respectively. The synthesis of L-theanine was performed in a reaction mixture containing 10 mM L-Gln, 40 mM ethylamine, and 1.04 U His6-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.  相似文献   

2.
For expression of Bacillus stearothermophilus NCIB 8924 leucine aminopeptidase II (LAP II) in Escherichia coli regulated by a T5 promoter, the gene was amplified by polymerase chain reaction and cloned into expression vector pQE-32 to generate pQE-LAPII. The His(6)-tagged enzyme was overexpressed in IPTG-induced E. coli M15 (pQE-LAPII) as a soluble protein and was purified to homogeneity by nickel-chelate chromatography to a specific activity of 425 U/mg protein with a final yield of 76%. The subunit molecular mass of the purified protein was estimated to be 44.5 kDa by SDS-PAGE. The temperature and pH optima for the purified protein were 60 degrees C and 8.0, respectively. Under optimal condition, the purified enzyme showed a marked preference for Leu- p-nitroanilide, followed by Arg- and Lys-derivatives. The His(6)-tagged enzyme was stimulated by Co(2+) ions, but was strongly inhibited by Cu(2+) and Hg(2+) and by the chelating agents, DTT and EDTA. The EDTA-treated enzyme could be reactivated with Co(2+) ions, indicating that it is a cobalt-dependent exopeptidase. Taking the biochemical characteristics together, we found that the recombinant LAP II exhibits no important differences from those properties described for the native enzyme.  相似文献   

3.
S-Adenosyl-L-methionine: uroporphyrinogen III methyltransferase (SUMT), a key regulatory enzyme, converts uroporphyrinogen III to precorrin-2 in the porphinoids biosynthesis. In this study, the mature SUMT was signified that the maize SUMT precursor encoded by the open reading frame of maize SUMT cDNA was deleted the first 91 amino acids constituting the postulated signal peptide. Several mature SUMT fusion and deletion mutants were conducted. It actively expressed in Escherichia coli that the mature SUMT, or the truncated one deleting the C-terminal extra 52 amino acids based on SUMT sequence comparisons. On the contrary, it expressed as an inclusion body in E. coli that the mature SUMT fusion mutant, the SUMT precursor, or the mature SUMT deleting the N-terminal 36 amino acids including glycine-rich region involved directly in SAM binding. The purified His6-tagged mature SUMT was homodimer with a molecular weight of 34 kDa, as shown by SDS-PAGE, 52 kDa using gel-filtration chromatography, and 79 kDa by dynamic light scattering assay. Red fluorescent compounds were associated with the recombinant mature SUMT which were identified as sirohydrochlorin and trimethylpyrrocorphin by spectroscopic analysis. This association slightly altered the protein secondary structure confirmed by circular dichroism assay.  相似文献   

4.
A xylose reductase (XR) gene was identified from the Neurospora crassa whole-genome sequence, expressed heterologously in Escherichia coli, and purified as a His6-tagged fusion in high yield. This enzyme is one of the most active XRs thus far characterized and may be used for the in vitro production of xylitol.  相似文献   

5.
The gene encoding dUTPase from Pyrococcus woesei was cloned into Escherichia coli expression system. It shows 100% gene identity to homologous gene in Pyrococcus furiosus. The expression of N-terminal His(6)-tagged Pwo dUTPase was performed in E. coli BL21(DE3)pLysS and E. coli Rosetta(DE3)pLysS strain that contains plasmid encoding additional copies of rare E. coli tRNAs. E. coli Rosetta(pLysS) strain was found with two times higher expression yield of His(6)-tagged Pwo dUTPase than E. coli BL21(DE3)pLysS. The His(6)-tagged Pwo dUTPase was purified on Ni(2+)-IDA-Sepharose, dialyzed, and the enzyme activity was investigated. We found that His(6)-tag domain has no influence on dUTP hydrolytic activity. dUTP is generated during PCR from dCTP, which inhibits the polymerization of DNA catalyzed by DNA polymerase with 3(')-5(') exonuclease activity. We observed that the thermostable His(6)-tagged Pwo dUTPase used for the polymerase chain reaction with P. woesei DNA polymerase improves the efficiency of PCR and it allows for amplification of longer targets.  相似文献   

6.
Li J  Chi Z  Wang X 《Microbiological research》2010,165(3):173-182
The SAP6 gene (without signal sequence) encoding Metschnikowia reukaufii acid protease was amplified by PCR and fused to the expression vector pET-24a(+). The carboxy-terminal 6x His-tagged recombinant acid protease (rSAP6) was expressed from pET-24a(+)SAP6-6His in Escherichia coli BL21 (DE3) and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified rSAP6 was 54kDa. The optimal temperature and pH of the purified rSAP6 were 40 degrees C and 3.4, respectively. The enzyme was stable below 45 degrees C and between pH 2.6 and 5.0. The results show that Mn(2+) had an activating effect on the enzyme, while Cu(2+), Mg(2+), Zn(2+) and Ag(+) acted as inhibitors of the enzyme. However, Ca(2+) had no effect on the enzyme activity. The purified rSAP6 was characterized as an aspartic protease as it was inhibited by aspartic protease-specific inhibitors, such as pepstatin. It was also found that the purified rSAP6 had milk-clotting activity.  相似文献   

7.
In the previous study we cloned Pyrococcus woesei gene coding thermostable beta-galactosidase into pET30-LIC expression plasmid. The nucleotide sequence revealed that beta-galactosidase of P. woesei consists of 510 amino acids and has a molecular weight of 59, 056 kDa (GenBank Accession No. AF043283). It shows 99.9% nucleotide identity to the nucleotide sequence of beta-galactosidase from Pyrococcus furiosus. We also demonstrated that thermostable beta-galactosidase can be produced with high yield by Escherichia coli strain and can be easy separated by thermal precipitation of other bacterial proteins at 85 degrees C (S. D $$;abrowski, J. Maciuńska, and J. Synowiecki, 1998, Mol. Biotechnol. 10, 217-222). In this study we presented a new expression system for producing P. woesei beta-galactosidase in Escherichia coli and one-step chromatography purification procedure for obtaining pure enzyme (His(6)-tagged beta-galactosidase). The recombinant beta-galactosidase contained a polyhistidine tag at the N-terminus (20 additional amino acids) that allowed single-step isolation by Ni affinity chromatography. The enzyme was purified by heat treatment (to denature E. coli proteins), followed by metal-affinity chromatography on Ni(2+)-TED-Sepharose columns. The enzyme was characterized and displayed high activity and thermostability. This bacterial expression system appears to be a good method for production of the thermostable beta-galactosidase.  相似文献   

8.
A novel protocol for producing recombinant Moloney murine leukemia virus (MMLV-RT) in Escherichia coli is reported. The optimized coding sequence for mature MMLV-RT was cloned into pET28a and over-expressed as an N-terminal His6-tagged fusion protein. An enterokinase (EK) recognition site was introduced between the His6-tag and MMLV-RT to release tag-free enzyme. Optimal expression of soluble His6-MMLV-RT was achieved by chaperone co-expression and lower temperature fermentation. The His6-tagged enzyme was first purified by Ni2+ affinity chromatography. The bound enzyme was then eluted by EK digestion and the eluate was purified on an anion-exchange Q column to remove DNA and EK. Twenty-one milligram MMLV-RT was obtained from 1 l of bacterial culture.  相似文献   

9.
A novel human TF-1 cell apoptosis-related protein, TFAR19, cloned from a human leukemia cell line, TF-1, was first overexpressed in Escherichia coli with the sequence Met-Gly-His(6)-Gly-Thr-Asn-Gly, a hexahistidine sequence followed by a hydroxylamine cleavage site attached to its amino terminus. The resulting protein was soluble and single-step purified to homogeneity by metal chelating affinity chromatography. After cleavage of the purified His(6)-tagged TFAR19 sample with hydroxylamine, highly purified untagged TFAR19 protein was then obtained through an FPLC Resource Q column. The structural characteristics and function of the His(6)-tagged and untagged TFAR19 proteins were studied using circular dichroism, intrinsic fluorescence, and ANS-binding fluorescence spectra and apoptosis activity assay. The results show that alpha-helix is the main secondary structure of the proteins and the two forms of TFAR19 protein fold properly, which correspond well to their apoptosis activity expression. The results also indicate that the extra sequence including the His(6)-tag fused to the N-terminus of TFAR19 protein has a minimal effect on its structure and function, suggesting that the His(6)-tagged TFAR19 protein could be further used as an immobilized target for finding potential proteins which interact with TFAR19 from a cDNA library using in vitro ribosome display technique.  相似文献   

10.
Human tyrosyl-tRNA synthetase is a homodimeric enzyme and each subunit is near 58 KD. It catalyzes the aminoacylation of tRNA(Tyr) by L-tyrosine. The His(6)-tagged human TyrS gene was obtained by RT-PCR from total RNA of human lung giant-cell cancer strain 95 D. It was confirmed by sequencing and cloned into the expression vector pET-24 a (+) to yield pET-24 a (+)-HTyrRS, which was transfected into Escherichia coli BL21-CodonPlus-RIL. The induced-expression level of His(6)-tagged human TyrRS was about 24% of total cell proteins under IPTG inducing. The recombinant protein was conveniently purified in a single step by metal (Ni(2+)) chelate affinity chromatography. About 22.3mg purified enzyme could be obtained from 1L cell culture. The k(cat) value of His(6)-tagged human TyrRS in the second step of tRNA(Tyr) aminoacylation was 1.49 s(-1). The K(m) values of tyrosine and tRNA(Tyr) were 0.3 and 0.9 microM. Six His residues at the C terminus of human TyrRS have little effect on the activities of the enzyme compared with other eukaryotic TyrRSs.  相似文献   

11.
Cyclohexanone monooxygenase (CMO) is a soluble flavoenzyme originally isolated from Acinetobacter spp. which carries out Baeyer-Villiger reactions with cyclic ketone substrates. In the present study we cloned the Acinetobacter CMO gene and modified it for facile purification from heterologous expression systems by incorporation of a His(6)-tag at its C-terminus. A single purification step employing metal (Ni(2+))-affinity column chromatography provided essentially homogeneous enzyme in yields of 69-72%. The properties of the purified, recombinant enzymes (rCMO) were compared with that of native CMO (nCMO) isolated from Acinetobacter cultures grown in the presence of cyclohexanone. The specific activities of His(6)-tagged rCMO and nCMO toward their index substrate, cyclohexanone, were similar and ranged from 14 to 20 micromol/min/mg. nCMO and rCMO from the Escherichia coli expression system exhibited molecular masses, determined by electrospray mass spectrometry, of 60,800 and 61,615 Da, respectively, an increase for the recombinant enzyme equivalent to the mass of the His(6)-tag. However, rCMO expressed in Saccharomyces cerevisiae consistently exhibited a mass some 50 Da larger than rCMO expressed in bacteria. Edman degradation confirmed that rCMO purified from the E. coli system and nCMO shared the same N-terminal sequence, whereas no sequence information could be obtained for rCMO expressed in yeast. Therefore, the yeast-expressed enzyme possesses an additional posttranslational modification(s), possibly acylation, at the N-terminus. Expression in E. coli is the preferred system for future site-directed mutagenesis studies and crystallization efforts.  相似文献   

12.
The methionine residues at positions 17, 104, 208, 214, 292, 315, 324, and 446 in the primary amino acid sequence of a truncated Bacillus sp. TS-23 alpha-amylase (His(6)-tagged BLADeltaNC) was changed to oxidative-resistant leucine by site-directed mutagenesis. The mutant enzymes with an apparent molecular mass of approximately 54 kDa were overexpressed in recombinant Escherichia coli. The specific activity for Met315Leu and Met446Leu was decreased by more than 76%, while Met17Leu, Met104Leu, Met208Leu, Met214Leu, Met292Leu, and Met324Leu showed 247, 128, 37, 260, 232, and 241%, respectively, higher activity than the wild-type enzyme. In comparison with wild-type enzyme, a lower K(m) value was observed for all mutant enzymes. The 3.2- and 4.5-fold increases in the catalytic efficiency (k(cat)/K(m)) for Met208Leu and Met324Leu, respectively, were partly contributed by a 68% and 38% decrease in K(m) values. Wild-type enzyme was sensitive to chemical oxidation, but Met208Leu was stable even in the presence of 500 mM H(2)O(2). Except for Met214Leu, which was quite sensitive to H(2)O(2), the other mutants showed a profile of oxidative inactivation similar to that of the wild-type enzyme. These observations indicate that the oxidative stability of His(6)-tagged BLADeltaNC can be improved by replacement of the critical methionine residue with leucine.  相似文献   

13.
14.
beta-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The (His6)-tagged recombinant enzyme, designated as XlyBK- 110, was efficiently purified using Ni2?-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK- 100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The Km and Vmax values toward p-nitrophenyl-beta-D-xylopyranoside (pNPX) were 1.45mM and 10.75 micromol/min/mg, respectively. This enzyme had pH and temperature optima at 6.0 and 45 degrees C, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-alpha-Larabinofuranoside, p-nitrophenyl-beta-D-glucopyranoside, or p-nitrophenyl-beta-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of beta-Dxylosidase- hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.  相似文献   

15.
p15 is a novel fungal protein which induces neurite outgrowth and neuronal differentiation of PC12 cells. In the present study, we report molecular cloning, functional expression and characterization of the gene encoding p15. The deduced amino acid sequence suggested that p15 is synthesized as a precursor with 31 extra amino-terminal amino acids including a putative signal sequence, and 20 carboxy-terminal amino acids, in addition to the 118 amino acids-long mature region with neurite-inducing activity. From the poly(A)(+) RNA prepared from the producing fungal strain, a cDNA fragment encoding the mature region of p15 was amplified and His(6)-tagged recombinant p15 was produced in Escherichia coli. The recombinant protein purified by a single step on Ni(2+) agarose column chromatography exhibited comparable specific activity as native p15 in the PC12 neurite extension assay. The effect of His(6)-p15 was blocked by nicardipine, suggesting that Ca(2+) influx through the L-type Ca(2+) channels is essential for its neurite-inducing activity. In addition, mutational analysis of His(6)-p15 demonstrated that both intramolecular disulfide bonds are essential for its biological activity.  相似文献   

16.
A nitrilase-like protein from Arabidopsis thaliana (NLP1) was expressed in Escherichia coli as a His(6)-tagged protein and purified to apparent homogeneity by Ni(2+)-chelate affinity chromatography. The purified enzyme showed N-carbamoylputrescine amidohydrolase activity, an enzyme involved in the biosynthesis of polyamines in plants and bacteria. N-carbamoylputrescine amidohydrolase activity was confirmed by identification of two of the three occurring products, namely putrescine and ammonia. In contrast, no enzymatic activity could be detected when applying various compounds including nitriles, amines, and amides as well as other N-carbamoyl compounds, indicating the specificity of the enzyme for N-carbamoylputrescine. Like the homologous beta-alanine synthases, NLP1 showed positive cooperativity toward its substrate. The native enzyme had a molecular mass of 279 kDa as shown by blue-native polyacrylamide gel electrophoresis, indicating a complex of eight monomers. Expression of the NLP1 gene was found in all organs investigated, but it was not induced upon osmotic stress, which is known to induce biosynthesis of putrescine. This is the first report of cloning and expression of a plant N-carbamoylputrescine amidohydrolase and the first time that N-carbamoylputrescine amidohydrolase activity of a recombinant protein could be shown in vitro. NLP1 is one of the two missing links in the arginine decarboxylase pathway of putrescine biosynthesis in higher plants.  相似文献   

17.
Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1).  相似文献   

18.
We have cloned, over-expressed and purified enolase from Plasmodium falciparum strain NF54 in Escherichia coli in active form, as an N-terminal His6-tagged protein. The sequence of the cloned enolase from the NF54 strain is identical to that of strain 3D7 used in full genome sequencing. The recombinant enolase (r-Pfen) could be obtained in large quantities (approximately 50 mg per litre of culture) in a highly purified form (> 95%). The purified protein gave a single band at approximately 50 kDa on SDS/PAGE. MALDI-TOF analysis gave a mean +/- SD mass of 51396 +/- 16 Da, which is in good agreement with the mass calculated from the sequence. The molecular mass of r-Pfen determined in gel-filtration experiments was approximately 100 kDa, indicating that P. falciparum enolase is a homodimer. Kinetic measurements using 2-phosphoglycerate as substrate gave a specific activity of approximately 30 U.mg(-1) and K(m2PGA) = 0.041 +/- 0.004 mm. The Michaelis constant for the reverse reaction (K(mPEP)) is 0.25 +/- 0.03 mm. pH-dependent activity measurements gave a maximum at pH 7.4-7.6 irrespective of the direction of catalysis. The activity of this enzyme is inhibited by Na+, whereas K+ has a slight activating effect. The cofactor Mg2+ has an apparent activation constant of 0.18 +/-0.02 mm. However, at higher concentrations, it has an inhibitory effect. Polyclonal antibody raised against pure recombinant P. falciparum enolase in rabbit showed high specificity towards recombinant protein and is also able to recognize enolase from the murine malarial parasite, Plasmodium yoelii, which shares 90% identity with the P. falciparum protein.  相似文献   

19.
Human trpS gene was cloned into the expression vector pET-24a(+) to yield pET-24a(+)-HTrpRS, which could direct the synthesis of a mammalian derived protein in Escherichia coli BL21-CodonPlus(DE3)-RIL. The vector allows overproduction and single-step purification of His(6)-tagged human tryptophanyl-tRNA synthetase by the facilitation of metal (Ni(2+)) chelate affinity chromatography. The expression level of human TrpRS was about 40% of total cell proteins after isopropyl beta-D-thiogalactoside induction. The overproduced human TrpRS-His(6) could be purified to homogeneity within 2 h and about 24 mg purified enzyme could be obtained from 400 ml cell culture. The His(6) tag at C terminus had little effect on the binding ability of its substrates.  相似文献   

20.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号