首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucan specifity of the purified chloroplast and non-chloroplast forms of -1,4-glucan phosphorylase (EC 2.4.1.1) from spinach leaves (Steup and E. Latzko (1979), Planta 145, 69–75) was investigated. Phosphorolysis by the two enzymes was studied using a series of linear maltodextrins (degree of polymerization 11), amylose, amylopectin, starch, and glycogen as substrates. For all unbranched glucans (amylose and maltodextrins G5–G11), the chloroplast phosphorylase had a 7–10-fold higher apparent affinity (determined by initial velocity measurements) than the non-chloroplast phosphorylase form. For both enzyme forms, the minimum chain length required for a significant rate of phosphorolysis was five glucose units. Likewise, phosphorolysis ceased when the maltodextrin was converted to maltotetraose. With the chloroplast phosphorylase, maltotetraose was a linear competitive inhibitor with respect to amylose or starch (K i-0.1 mmol 1-1); the inhibition by maltotetraose was less pronounced with the non-chloroplast enzyme. In contrast to unbranched glucans, the non-chloroplast phosphorylase exhibited a 40-, 50-, and 300-fold higher apparent affinity for amylopectin, starch, and glycogen, respectively, than the chloroplast enzyme. With respect to these kinetic properties the chloroplast phosphorylase resembled the type of maltodextrin phosphorylase.Abbreviations G1P Glucose 1-phosphate - MES 2(N-morpholino)ethane sulphonic acid - Pi orthophosphate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

2.
A treX in the trehalose biosynthesis gene cluster of Sulfolobus solfataricus ATCC 35092 has been reported to produce TreX, which hydrolyzes the alpha-1,6-branch portion of amylopectin and glycogen. TreX exhibited 4-alpha-D-glucan transferase activity, catalyzing the transfer of alpha-1,4-glucan oligosaccharides from one molecule to another in the case of linear maltooligosaccharides (G3-G7), and it produced cyclic glucans from amylopectin and amylose like 4-alpha-glucanotransferase. These results suggest that TreX is a novel isoamylase possessing the properties of 4-alpha-glucanotransferase.  相似文献   

3.
The effects of ether anaesthesia on metabolites of mouse brain in altered endocrine states has been examined. Alloxan diabetic mice, with elevated levels of blood and brain glucose, exhibited changes in brain metabolites after ether anaesthesia that were comparable to those seen in normal animals. Sympathectomized and/or adrenalectomized mice had decreased levels of brain glucose. The percentage elevation of glucose in the brains of these animals under ether anaesthesia approximated to normal values, although the absolute cerebral levels were lower. Increases in glycogen in the brains of these animals were somewhat diminished. In none of the altered endocrine states were the changes in brain metabolites following ether anaesthesia eliminated. The activity of UDPglucose-glycogen glucosyltransferase (UDPglucose: glycogen α-4-glucosyltransferasee, EC 2.4.1.11) in the mouse brain was measured in the absence and in the presence of glucose-6-P. Neither the total activity nor the percentage of the I form (measured in the absence of glucose-6-P) was altered by anaesthesia or by the endocrine state of the animal. The Michaelis constants with UDPglucose as substrate for the total and I forms were 0·36 mM and 1·0 mM, respectively. Considerable UDPglucose-glycogen glucosyltransferase activity was observed in the absence of added glycogen primer. The observed increase in activity in the presence of added glucose-6-P was greater than would have been anticipated if the hexose phosphate were acting at only one site.  相似文献   

4.
The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells.  相似文献   

5.
Abstract

Glucan phosphorylase, branching enzyme, and 4-α-glucanotransferase were employed to produce glucose polymers with controlled molecular size and structures. Linear or branched glucan was produced from glucose-1-phosphate by glucan phosphorylase alone or together with bracnhing enzyme, where the molecular weight of linear glucan was strictly controlled by the glucose-1-phosphate/primer molar ratio, and the branching pattern by the relative branching enzyme/glucan phosphorylase activity ratio. Cyclic glucans were produced by the cyclization reaction of 5-αglucanotransferases and branching enzyme on amylose and amylopectin. Molecular size and structure of cyclic glucan was controlled by the type of enyzyme and substrate chosen and by the reaction conditions. This in vitro approach can be used to manufacture novel glucose polymers with applicable value.  相似文献   

6.
The Neurospora crassa glycogen synthase (UDPglucose:glycogen 4-alpha-glucosyltransferase, EC 2.4.1.11) was purified to electrophoretic homogeneity by a procedure involving ultracentrifugation, DEAE-cellulose column chromatography, (NH4)2SO4 fractionation and 3-aminopropyl-Sepharose column chromatography. The final purified enzyme preparation was almost entirely dependent on glucose-6-P and had a specific activity of 6.9 units per mg of protein. The subunit molecular weight of the glycogen synthase was determined by electrophoresis in sodium dodecyl sulfate-polyacrylamide gel to be 88 000--90 000. The native enzyme was shown to have a molecular weight of 270 000 as determined by sucrose density gradient centrifugation. Thus, the glucose-6-P-dependent form of the N. crassa glycogen synthase can exist as trimer of the subunit. Limited proteolysis with trypsin or chymotrypsin converted the glucose-6-P-dependent form of the enzyme into an apparent glucose-6-P-independent form. The enzyme was shown to catalyze transfer of glucose from UDPglucose to glycogen as well as to its phosphorylase limit dextrin, but not to its beta-amylase limit dextrin. Moreover, glucose, maltose and maltotriose were not active as acceptors.  相似文献   

7.
Two types of phosphorylase [EC 2.4.1.1] from the etiolated soybean (Glycine max) cotyledons were separated by column chromatography on DEAE-Sephacel and further purified to apparent homogeneities. Molecular weights of the subunits were 100,000 and 113,000 for phosphorylases I and II, respectively. The native enzymes I and II were a dimer (200,000) and tetramer (450,000), respectively. Electrophoretic analysis by the Hedrick and Smith method indicated that the two phosphorylases were distinct proteins with no correlation. The apparent Km values for glucose 1-phosphate, glycogen, and maltoheptaose of enzyme I were 4.00 mM, 0.18 mg/ml, and 10.3 mM, respectively, while those values of enzyme II were 5.43 mM, 23.8 mg/ml, and 0.30 mM, respectively. The relative activity of enzyme I increased with increasing chain length of the substrate glucans, and waxy maize amylopectin was the best substrate among the 11 saccharides examined. For enzyme II, maltooligosaccharides with degree of polymerization (DP) 5-7 were the better substrates than amylose (DP 38) and glycogen. These results indicated that the soybean phosphorylases I and II have similar properties to a cytoplasmic and chloroplastic type of plant leaf enzyme, respectively.  相似文献   

8.
L Holm  C Sander 《The EMBO journal》1995,14(7):1287-1293
We report here an unexpected similarity in three-dimensional structure between glucosyltransferases involved in very different biochemical pathways, with interesting evolutionary and functional implications. One is the DNA modifying enzyme beta-glucosyltransferase from bacteriophage T4, alias UDP-glucose:5-hydroxymethyl-cytosine beta-glucosyltransferase. The other is the metabolic enzyme glycogen phosphorylase, alias 1.4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase. Structural alignment revealed that the entire structure of beta-glucosyltransferase is topographically equivalent to the catalytic core of the much larger glycogen phosphorylase. The match includes two domains in similar relative orientation and connecting helices, with a positional root-mean-square deviation of only 3.4 A for 256 C alpha atoms. An interdomain rotation seen in the R- to T-state transition of glycogen phosphorylase is similar to that observed in beta-glucosyltransferase on substrate binding. Although not a single functional residue is identical, there are striking similarities in the spatial arrangement and in the chemical nature of the substrates. The functional analogies are (beta-glucosyltransferase-glycogen phosphorylase): ribose ring of UDP-pyridoxal ring of pyridoxal phosphate co-enzyme; phosphates of UDP-phosphate of co-enzyme and reactive orthophosphate; glucose unit transferred to DNA-terminal glucose unit extracted from glycogen. We anticipate the discovery of additional structurally conserved members of the emerging glucosyltransferase superfamily derived from a common ancient evolutionary ancestor of the two enzymes.  相似文献   

9.
Specific inhibition of glucosyltransferase of Streptococcus mutans   总被引:1,自引:0,他引:1  
Clinical dextran, partially oxidized with sodium periodate, acts as a potent inhibitor of the extracellular glucosyltransferases of several cariogenic strains of oral Streptococcus mutans. Preincubation with oxidized dextran resulted in a rapid loss of up to 80% of the ability of the enzyme preparation to synthesize polysaccharide from sucrose, but there was no loss of enzyme activity when the oxidized dextrans were reduced with sodium borohydride before preincubation with enzyme. The presence of unoxidized clinical dextran during the preincubation period afforded the enzymes protection against inhibition by partially-oxidized dextran, but clinical dextran did not readily restore activity when it was added after incubation of the enzyme with oxidized polysaccharide. Fructosyltransferase, and glycogen and starch phosphorylase, activities were not inhibited by oxidized dextran, and the bacterial glucosyltransferases were not inhibited by partially oxidized glycogen and amylose. It is proposed that the potent and specific inhibition of glucosyltransferase by oxidized dextran results from the interaction of dialdehyde groups with reactive functional groups close to the dextran-binding site of the enzyme.  相似文献   

10.
The microsomal fractions of cultured hamster fibroblasts (BHK-21 cells) catalyze the incorporation of glucose from UDPglucose or of deoxyglucose from UDPdeoxyglucose into a reaction mixture with liposomes consisting of ceramide and phosphatidylcholine. The microsomal fractions also catalyze the transfer of glucose from UDPglucose to endogenous acceptors. The specific activity of ceramide deoxyglucoside or ceramide glucoside formation was significantly higher when microsomal preparations obtained from deoxyglucose-treated or herpesvirus-infected BHK-21 cells were used as the glucosyltransferase source. Deoxyglucose was incorporated from UDPdeoxyglucose into hydroxy- and nonhydroxy-fatty acid-containing ceramides at approximately the same rate. Competitive inhibition of deoxyglucosylation of ceramides by UDPglucose suggests that both reactions were catalyzed by the same enzyme, viz. UDPglucose:ceramide glucosyltransferase. This inhibition of glycosphingolipid synthesis may account, in part, for the inhibitory effect of deoxyglucose on lipid-containing viruses.  相似文献   

11.
The complete nucleotide sequence was determined for the Streptococcus sobrinus MFe28 gtfI gene, which encodes a glucosyltransferase that produces an insoluble glucan product. A single open reading frame encodes a mature glucosyltransferase protein of 1,559 amino acids (Mr, 172,983) and a signal peptide of 38 amino acids. In the C-terminal one-third of the protein there are six repeating units containing 35 amino acids of partial homology and two repeating units containing 48 amino acids of complete homology. The functional role of these repeating units remains to be determined, although truncated forms of glucosyltransferase containing only the first two repeating units of partial homology maintained glucosyltransferase activity and the ability to bind glucan. Regions of homology with alpha-amylase and glycogen phosphorylase were identified in the glucosyltransferase protein and may represent regions involved in functionally similar domains.  相似文献   

12.
Abstract: Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; α-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 μM noradrenaline is mediated by β-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 m M K+ or 100 μ M veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A halfmaximal activation of phosphorylase occurs at about 12 m M K+. Addition of EGTA or LaCl3, reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.  相似文献   

13.
1. Sinapis alba L. seedlings contain glycosyltransferase catalyzing the synthesis of sterol glucosides in the presence of UDPglucose as sugar donor. The major activity occurs in the membranous fraction sedimenting at 300--9000 x g. Successive treatment of the particulate enzyme fraction with acetone and Triton X-100 affords a soluble glucosyltransferase preparation which can be partly purified by gel filtration on Sephadex G-150. Molecular weight of the glucosyltransferase is 1.4 . 10(5). Apparent Km values for UDPglucose and sitosterol are 8.0 . 10(-5) M and 5.0 . 10(-6) M, respectively. 2. Comparison was made of the S. alba glucosyltransferase with a similar sterol-glucosylating enzyme isolated from non-photosynthesizing organism Physarum polycephalum (Myxomycetes). UDPglucose was the most efficient glucose donor in both cases but the enzyme from Ph. polycephalum can also utilize CDPglucose and TDPglucose. Glucose acceptors are, in case of both enzymes, sterols containing a beta-OH group at C-3 and a planar ring system (5 alpha-H or double bond at C-5). The number and position of double bonds in the ring system and in the side chain, as well as the presence of additional alkyl groups in the side chain at C-24 are of secondary importance. 3. The present results indicate that both enzymes can be regarded as specific UDPglucose:sterol glucosyltransferases. Certain differences in their specificity towards donors and acceptors of the glucosyl moiety suggest, however, a different structure of the active sites in both enzymes.  相似文献   

14.
In skeletal muscles of the trout, a fish that intensively swims and is capable for sharp sprinting movements, an active form of ATP: phosphorylase b phosphotransferase (EC 2.7.1.38, glycogen phosphorylase kinase; GPK) and partially active 1,4-D-glucan:orthophosphate glucosyltransferase (EC 2.4.1.1, glycogen phosphorylase; GP) are revealed in the state of a relative rest. The isolated GP ab has a higher affinity to substrates (glucose-1-phosphate and glycogen) than GP b and is able to split glycogen without pre-activation with AMP or GPK. The presence of the activated forms of GPK and GP in resting muscles of the trout provides an opportunity for the very fast Ca2+-activation of glycogenolysis, coupled with activation of muscle contraction. This seems to be a biochemical mechanism of adaptation for the energy supply of intense muscle activity in this fish species inhabiting rapid cataracted rivers.  相似文献   

15.
A treX in the trehalose biosynthesis gene cluster of Sulfolobus solfataricus ATCC 35092 has been reported to produce TreX, which hydrolyzes the α-1,6-branch portion of amylopectin and glycogen. TreX exhibited 4-α-D-glucan transferase activity, catalyzing the transfer of α-1,4-glucan oligosaccharides from one molecule to another in the case of linear maltooligosaccharides (G3–G7), and it produced cyclic glucans from amylopectin and amylose like 4-α-glucanotransferase. These results suggest that TreX is a novel isoamylase possessing the properties of 4-α-glucanotransferase.  相似文献   

16.
A mechanism of initiation of glycogen biosynthesis in Escherichia coli has been previously postulated: In a first step, the glucosyl groups would be transferred into an acceptor protein from UDPglucose or ADPglucose by two glucosyl transferases, distinct from the glycogen synthase. In this work, the activity of transfer from UDPglucose into a methanol-insoluble fraction could not be found in the crude extracts of six independently isolated glycogen synthase-deficient mutants of E. coli K-12. Purified E. coli K-12 glycogen synthase was able to catalyze the unprimed reaction from ADPglucose and UDPglucose but at a very low rate; the rate with UDPglucose is 6–7% the rate observed with ADPglucose. With these two substrates, the unprimed reaction was strongly stimulated by the simultaneous presence of salts and branching enzyme. However the activity with UDPglucose increased rapidly at low concentrations of branching enzyme and was inhibited at physiological concentrations whereas the activity with ADPglucose reached a maximum only at these concentrations. Consequently, the relative activities found with ADPglucose and UDPglucose varied with the branching enzyme concentration. Transfer from UDPglucose was inhibited by low concentrations of ADPglucose and high concentrations of glycogen. These results suggest that the same enzyme, namely the glycogen synthase, catalyzes the unprimed transfer from ADPglucose and UDPglucose and that ADPglucose is probably the most important physiological donor in glycogen biosynthesis in E. coli.  相似文献   

17.
The glycogen phosphorylase of Tetrahymena pyriformis complexes with glycogen as judged by its elution pattern from columns of Sepharose 6B. Complex formation does not occur with starch, amylose, or amylopectin, and neither do these polyglucans serve as primers for the enzyme. To study the association between the phosphorylase and glycogen particles in situ, Tetrahymena were grown under differing physiological conditions, phosphorylase was isolated and chromatographed on a Sepharose 6B column. Phosphorylase activity isolated from cells grown in the absence of glucose was only partially associated with glycogen, while in cells exposed to glucose for 30 min or more all the phosphorylase activity was associated with glycogen. The effects of culture age and anaerobiosis on the relative amounts of free and glycogen-bound enzyme in the cells were also studied. It was concluded from the in vivo experiments that there was no simple relation between the fraction of enzyme bound to glycogen and between cell glycogen content.  相似文献   

18.
Affinity of glucose, fructose and mannose for tumour hexokinase and their rates of phosphorylation at saturation concentration have been correlated with rates of glycogen synthesis by intact tumour cells at different concentrations of the three substrates. Competition experiments with one sugar labelled and the other sugar unlabelled indicate inhibition of glycogen synthesis by the sugar with a low K(m) for hexokinase. Glycogen synthesis from glucose 1-phosphate in aged cells and from nucleoside in freshly prepared cells is stimulated by fructose and inhibited by glucose. The decrease in glycogen formation from glucose 1-phosphate by oligomycin is partially overcome by increased fructose concentrations. These results are explained by an activation of alpha-glucan phosphorylase by fructose and an inhibition of this enzyme by glucose. It is suggested that differences in localization of glucose 6-phosphate, available to the intact cell in various ways, determine its transformation into glycogen by either the UDP-glucose-alpha-glucan glucosyltransferase reaction or by the alpha-glucan phosphorylase reaction.  相似文献   

19.
alpha-Glucan phosphorylases are characterized by considerable difference in substrate specificities, even though the primary structures are well conserved among the enzymes from microorganisms, plants, and animals. The higher plant phosphorylase isozyme designated as type L exhibits low affinity for a large, highly branched glucan (glycogen), presumably due to steric hindrance caused by a unique 78-residue insertion located beside the mouth of the active-site cleft, whereas another isozyme without the insertion (designated as type H) shows very high affinity for both linear and branched glucans. Using the recombinant type L isozyme from potato tuber as a starting framework and aiming at altering its substrate specificity, we have genetically engineered the 78-residue insertion and its flanking regions. Firstly, removal of the insertion and connection of the newly formed C- and N-terminals yielded a totally inactive enzyme, although the protein was produced in Escherichia coli cells in a soluble form. Secondly, a chimeric phosphorylase, in which the 78-residue insertion and its flanking regions are replaced by the corresponding region of the type H isozyme, has been shown to exhibit high affinity for branched glucans (Mori, H., Tanizawa, K., & Fukui, T., 1993, J. Biol. Chem. 268, 5574-5581), but when two and four unconserved residues in the N-terminal flanking region of the chimeric phosphorylase were mutated back to those of the type L isozyme, the resulting mutants showed significantly lowered affinity for substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Improved conditions for extraction and assay increased rates of sucrose synthesis from uridine diphosphate glucose (UDPglucose) plus fructose 6-phosphate (F.6.P) catalysed by leaf extracts 20-fold. Rates of 17.9, 25·0, 9·2 and 27·7 μmol/hr/g fr. wt respectively were obtained from pea shoots, spinach, wheat and bean leaves. Chloroplasts isolated from pea shoots, in which half the plastids were intact, contained less than 4% of the total UDPglucose-fructosephosphate glucosyltransferase, more than 30% of the ribulose diphosphate (RuDP) carboxylase, and more than 40% of the total chlorophyll of the leaf. Although some of the UDPglucose-fructose-phosphate glucosyltransferase was associated with particles smaller than chloroplasts at least 85% of the enzyme was not precipitated at 38 000 g. UDPglucose pyrophosphorylase, also thought to be essential for sucrose synthesis, was distributed between the cell fractions in a similar manner to UDPglucose-fructosephosphate glucosyltransferase. It is concluded that sucrose synthesis in pea shoots and spinach leaves occurs mainly, in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号